Skip to main content
Log in

Evaluation of antioxidant, α-amylase-inhibitory and antimicrobial activities of wheat gluten hydrolysates produced by ficin protease

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The object of this study was to produce bioactive hydrolysates from wheat gluten using ficin, a commercially important endopeptidase with plant origin, and evaluate antioxidant, antimicrobial and α-amylase inhibitory activities. Hydrolysate samples were collected at different time intervals (60, 120 and 180 min). Both samples obtained at 120 and 180 min were highly active against ABTS+ radical. The sample collected at 180 min was the most active hydrolysate in terms of DPPH radical scavenging activity, ferrous ion-chelating and α-amylase inhibition, and was further fractionated by ultrafiltration into three peptide fractions, T3-F1 (MW > 10 kDa), T3-F2 (3 < MW < 10 kDa) and T3-F3 (MW < 3 kDa). These fractions were compared in terms of antioxidant and α-amylase inhibitory abilities. The T3-F3 fraction, exhibited the strongest DPPH scavenging activity. The highest values of ABTS+ scavenging activity and α-amylase inhibition were detected in T3-F2 and T3-F3 and the lowest values in T3-F1, which were even lower than those of the parent hydrolysate. The fraction T3-F2 had the highest chelating ability and T3-F3 the lowest, even in comparison with the parent hydrolysate. The antibacterial properties of the hydrolysate sample collected at 180 min was evaluated against Staphylococcus aureus and Escherichia coli bacteria. The most significantly affected bacteria was S. aureus with the minimum inhibitory concentration value of 48 mg/mL, whereas the value obtained against E. coli was 52 mg/mL. The minimum bactericidal concentration was 60 mg/mL for both S. aureus and E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. M. Memarpoor-Yazdi, A. Asoodeh, C.J. Khan, A novel antioxidant and antimicrobial peptide from hen egg white lysozyme hydrolysates. J. Funct. Foods 4, 278–286 (2012). https://doi.org/10.1016/j.jff.2011.12.004

    Article  CAS  Google Scholar 

  2. F. Toldrá, M. Reig, M.C. Aristoy, L. Mora, Generation of bioactive peptides during food processing. Food Chem. 267, 395–404 (2018). https://doi.org/10.1016/j.foodchem.2017.06.119

    Article  CAS  PubMed  Google Scholar 

  3. A. Karimi, M.H. Azizi, G.H. Ahmadi, Fractionation of hydrolysate from corn germ protein by ultrafiltration: in vitro antidiabetic and antioxidant activity. Food Sci. Nutr. 8, 2395–2405 (2020). https://doi.org/10.1002/fsn3.1529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Z. Shahi, S.Z. Sayyed-Alangi, L. Najafian, Effects of enzyme type and process time on hydrolysis degree, electrophoresis bands and antioxidant properties of hydrolyzed proteins derived from defatted Bunium persicum Bioss. press cake. Heliyon 6, e03365 (2020). https://doi.org/10.1016/j.heliyon.2020.e03365

    Article  PubMed  PubMed Central  Google Scholar 

  5. A. Abbas, B. Sultana, A. Hussain, F. Anwar, N. Ahmad, Antioxidant potential, phenolics content and antimicrobial attributes of selected medicinal plants. Pak. J. Anal. Environ. Chem. 22(2), 307–319 (2021). https://doi.org/10.21743/pjaec/2021.12.10

    Article  CAS  Google Scholar 

  6. L. Gong, D. Feng, T. Wang, Y. Ren, Y. Liu, J. Wang, Inhibitors of á-amylase and á-glucosidase: potential linkage for whole cereal foods on prevention of hyperglycemia. Food Sci. Nutr. 8(12), 6320–6337 (2020). https://doi.org/10.1002/fsn3.1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. M. Esmaeilpour, M.R. Ehsani, M. Aminlari, Sh. Shekarforoush, E. Hoseini, Antimicrobial activity of peptides derived from enzymatic hydrolysis of goat milk caseins. Comp. Clin. Pathol. 25, 599–605 (2016). https://doi.org/10.1007/s00580-016-2237-x

    Article  CAS  Google Scholar 

  8. A. Osman, G. Enan, A.R. Al-Mohammadi, S. Abdel-Shafi, S. Abdel-Hameid, M.Z. Sitohy, N. El-Gazzar, Antibacterial peptides produced by Alcalase from cowpea seed proteins. Antibiotics 10, 870 (2021). https://doi.org/10.3390/antibiotics10070870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. D. Gottardi, PKh. Hong, M. Ndagijimana, B.M. Mirko, Conjugation of gluten hydrolysates with glucosamine at mild temperatures enhances antioxidant and antimicrobial properties. LWT 57, 181–187 (2014). https://doi.org/10.1016/j.lwt.2014.01.013

    Article  CAS  Google Scholar 

  10. M.B. Elmalimadi, J.R. Jovanovića, A.B. Stefanovića, S.J. Tanaskovića, S.B. Djurovićb, B.M. Bugarskic, Z.D. Knežević-Jugovića, Controlled enzymatic hydrolysis for improved exploitation of the antioxidant potential of wheat gluten. Ind. Crops Prod. 109, 548–557 (2017). https://doi.org/10.1016/j.indcrop.2017.09.008

    Article  CAS  Google Scholar 

  11. K. Pourmohammadi, E. Abedi, Hydrolytic enzymes and their directly and indirectly effects on gluten and dough properties: an extensive review. Food Sci. Nutr. 9(7), 3988–4006 (2021). https://doi.org/10.1002/fsn3.2344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. A.M. Gabler, K.A. Scherf, Comparative characterization of gluten and hydrolyzed wheat proteins. Biomolecules 10(9), 1227 (2020). https://doi.org/10.3390/biom10091227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. K.B. Devaraj, P.R. Kumar, P.V. Vishweshwaraiah, Purification, characterization, and solvent-induced thermal stabilization of ficin from Ficus carica. J. Agric. Food Chem. 56, 11417–11423 (2008). https://doi.org/10.1021/jf802205a

    Article  CAS  PubMed  Google Scholar 

  14. E.H. Siar, R. Morellon-Sterling, M.N. Zidoune, R. Fernandez-Lafuente, Use of glyoxyl-agarose immobilized ficin extract in milk coagulation: unexpected importance of the ficin loading on the biocatalysts. Int. J. Biol. Macromol. 144, 419–426 (2020). https://doi.org/10.1016/j.ijbiomac.2019.12.140

    Article  CAS  PubMed  Google Scholar 

  15. AACC Approved Methods of Analysis, 11th edn. Method 44-15.02. Moisture-Air-Oven Methods. Cereals & Grains Association, St. Paul. Accessed 3 Nov 1999

  16. AACC Approved Methods of Analysis, 11th edn. Method 08-01.01. Ash-Basic Method. Cereals & Grains Association, St. Paul. Accessed 3 Nov 1999

  17. AACC Approved Methods of Analysis, 11th edn. Method 46-12.01. Crude Protein-Kjeldahl Method, Boric Acid Modification. Cereals & Grains Association, St. Paul. Accessed 3 Nov 1999

  18. AACC Approved Methods of Analysis, 11th edn. Method 30–10.01. Crude Fat in Flour, Bread, and Baked Cereal Products Not Containing Fruit. Cereals & Grains Association, St. Paul. Accessed 3 Nov 1999

  19. J. Adler-Nissen, Enzymic Hydrolysis of Food Proteins (Elsevier Applied Science Publishers, New York, 1986), pp.11–12. https://doi.org/10.1016/0308-8146(87)90169-5

    Book  Google Scholar 

  20. J.E. Zapata-Montoya, D.E. Giraldo-Rios, A.J. Baéz-Suarez, Kinetic modeling of the enzymatic hydrolysis of proteins of visceras from red tilapia (Oreochromis sp.): effect of substrate and enzyme concentration. Vitae 25(1), 17–25 (2018). https://doi.org/10.17533/udea.vitae.v25n1a03

    Article  Google Scholar 

  21. P.M. Nielsen, D. Petersen, C. Dambmann, Improved method for determining food protein degree of hydrolysis. J. Food Sci. 66, 642–646 (2001). https://doi.org/10.1111/j.1365-2621.2001.tb04614.x

    Article  CAS  Google Scholar 

  22. A.G.B. Wouters, I. Rombouts, E. Fierens, K. Brijs, Ch. Blecker, J.A. Delcour, B.S. Murray, Foaming and air-water interfacial characteristics of solutions containing both gluten hydrolysate and egg white protein. Food Hydrocoll. 77, 176–186 (2018). https://doi.org/10.1016/j.foodhyd.2017.09.033

    Article  CAS  Google Scholar 

  23. F.C. Church, H.E. Swaisgood, D.H. Porter, G.L. Catignani, Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. J. Dairy Sci. 66, 1219–1227 (1983). https://doi.org/10.3168/jds.S0022-0302(83)81926-2

    Article  CAS  Google Scholar 

  24. H. Schägger, G. von Jagow, Tricine-sodium dodecyl sulfate polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166, 368–379 (1987). https://doi.org/10.1016/0003-2697(87)90587-2

    Article  PubMed  Google Scholar 

  25. Y. Xia, F. Bamdad, M. Gänzle, L. Chen, Fractionation and characterization of antioxidant peptides derived from barley glutelin by enzymatic hydrolysis. Food Chem. 134, 1509–1518 (2012). https://doi.org/10.1016/j.foodchem.2012.03.063

    Article  CAS  PubMed  Google Scholar 

  26. Y. Ngoh, C.H. Gan, Enzyme-assisted extraction and identification of antioxidative and α-amylase inhibitory peptides from Pinto beans (Phaseolus vulgaris cv. Pinto). Food Chem. 190, 331–337 (2016). https://doi.org/10.1016/j.foodchem.2015.05.120

    Article  CAS  PubMed  Google Scholar 

  27. G.L. Miller, Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31(3), 426–428 (1959). https://doi.org/10.1021/ac60147a030

    Article  CAS  Google Scholar 

  28. A. Meillisa, E.A. Siahaan, J.N. Park, HCh. Woo, B.S. Chun, Effect of subcritical water hydrolysate in the brown seaweed Saccharina japonica as a potential antibacterial agent on food-borne pathogens. J. Appl. Phycol. 25, 763–769 (2013). https://doi.org/10.1007/s10811-013-9973-y

    Article  Google Scholar 

  29. M. Balouiri, M. Sadiki, S. Koraichi Ibnsouda, Methods for in vitro evaluating antimicrobial activity: a review. J. Pharm. Anal. (2016). https://doi.org/10.1016/j.jpha.2015.11.005

    Article  PubMed  Google Scholar 

  30. X. Kong, H. Zhou, H. Qian, Enzymatic preparation and functional properties of wheat gluten hydrolysates. Food Chem. 101, 615–620 (2007). https://doi.org/10.1016/j.foodchem.2006.01.057

    Article  CAS  Google Scholar 

  31. M.B. Elmalimadi, A.B. Stefanovića, N.Z. Sekuljica, M.G. Zuza, N.D. Luković, J.R. Jovanović, Z.D. Knezević-Jugović, The synergistic effect of heat treatment on alcalase-assisted hydrolysis of wheat gluten proteins: functional and antioxidant properties. J. Food Process. Preserv. 1(5), e13207 (2017). https://doi.org/10.1111/jfpp.13207

    Article  CAS  Google Scholar 

  32. J. Wang, M.M. Zhao, Q.Z.H. Zhao, Y. Bao, Y.M. Jiang, Characterization of hydrolysates derived from enzymatic hydrolysis of wheat gluten. J. Food Sci. 72, C103–C107 (2007). https://doi.org/10.1111/j.1750-3841.2006.00247.x

    Article  CAS  PubMed  Google Scholar 

  33. M. Aider, Potential applications of ficin in the production of traditional cheeses and protein hydrolysates. JDS Commun. 2(5), 233–237 (2021). https://doi.org/10.3168/jdsc.2020-0073

    Article  PubMed  PubMed Central  Google Scholar 

  34. R. Morellon-Sterling, H. El-Siar, L.O. Tavano, Á. Berenguer-Murcia, R. Fernández-Lafuente, Ficin: a protease extract with relevance in biotechnology and biocatalysis. Int. J. Biol. Macromol. 162, 394–404 (2020). https://doi.org/10.1016/j.ijbiomac.2020.06.144

    Article  CAS  PubMed  Google Scholar 

  35. A.G. Wouters, I. Rombouts, E. Fierens, K. Brijs, J.A. Delcour, Relevance of the functional properties of enzymatic plant protein hydrolysates in food systems. Compr. Rev. Food Sci. Food Saf. 15(4), 786–800 (2016). https://doi.org/10.1111/1541-4337.12209

    Article  CAS  PubMed  Google Scholar 

  36. W. He, R. Yang, W. Zhao, Effect of acid deamidation-alcalase hydrolysis induced modification on functional and bitter-masking properties of wheat gluten hydrolysates. Food Chem. 277, 655–663 (2019). https://doi.org/10.1016/j.foodchem.2018.11.004

    Article  CAS  PubMed  Google Scholar 

  37. R. Jahanbani, S.M. Ghaffari, M. Salami, K. Vahdati, H. Sepehri, N. Namazi Sarvestani, N. Sheibani, A.A. Moosavi-Movahedi, Antioxidant and anticancer activities of walnut (Juglans regia L.) protein hydrolysates using different proteases. Plant Foods Hum. Nutr. 71(4), 402–409 (2016). https://doi.org/10.1007/s11130-016-0576-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. B. Lagrain, I. Rombouts, H. Wieser, J.A. Delcour, P. Koehler, A reassessment of the electrophoretic mobility of high molecular weight glutenin subunits of wheat. J. Cereal Sci. 56, 726–732 (2012). https://doi.org/10.1016/j.jcs.2012.08.003

    Article  CAS  Google Scholar 

  39. K.X. Zhu, C.Y. Su, X.N. Guo, W. Peng, H.M. Zhou, Influence of ultrasound during wheat gluten hydrolysis on the antioxidant activities of the resulting hydrolysate. Int. J. Food Sci. Technol. 46, 1053–1059 (2011). https://doi.org/10.1111/j.1365-2621.2011.02585.x

    Article  CAS  Google Scholar 

  40. M. Chalamaiah, T. Jyothirmayi, P.V. Diwan, K.B. Dinesh, Antioxidant activity and functional properties of enzymatic protein hydrolysates from common carp (Cyprinus carpio) roe (egg). J. Food Sci. Technol. 52(9), 5817–5825 (2015). https://doi.org/10.1007/s13197-015-1714-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. H. Agrawal, R. Joshi, M. Gupta, Isolation, purification and characterization of antioxidative peptide of pearl millet (Pennisetum glaucum) protein hydrolysate. Food Chem. 204, 365–372 (2016). https://doi.org/10.1016/j.foodchem.2016.02.127

    Article  CAS  PubMed  Google Scholar 

  42. J. Cotabarren, A. Rosso, M. Tellechea, J. Garcia Pardo, J. Lorenzo, W. Obregón, M. Parisi, Adding value to the chia (Salvia hispanica L.) expeller: production of bioactive peptides with antioxidant properties by enzymatic hydrolysis with Papain. Food Chem. 274, 848–856 (2019). https://doi.org/10.1016/j.foodchem.2018.09.061

    Article  CAS  PubMed  Google Scholar 

  43. A. Abbas, F. Anwar, S.M. Alqahtani, N. Ahmad, S.H. Al-Mijalli, M. Shahid, M. Iqbal, Hydro-distilled and supercritical fluid extraction of Eucalyptus camaldulensis essential oil: characterization of bioactives along with antioxidant, antimicrobial and antibiofilm activities. Dose-Response (2022). https://doi.org/10.1177/15593258221125477

    Article  PubMed  PubMed Central  Google Scholar 

  44. M. Mirzaei, S. Mirdamadi, M.R. Ehsani, M. Aminlari, Production of antioxidant and ACE-inhibitory peptides from Kluyveromyces marxianus protein hydrolysates: purification and molecular docking. J. Food Drug Anal. 26(2), 696–705 (2018). https://doi.org/10.1016/j.jfda.2017.07.008

    Article  CAS  PubMed  Google Scholar 

  45. M. Sbroggio, M. Montilha, V. Figueiredo, S. Georgetti, L. Kurozawa, Influence of the degree of hydrolysis and type of enzyme on antioxidant activity of okara protein hydrolysates. Food Sci. Technol. (Campinas) (2016). https://doi.org/10.1590/1678-457X.000216

    Article  Google Scholar 

  46. M. Nikoo, S. Benjakul, M. Yasemi, H. Ahmadi Gavlighi, X. Xu, Hydrolysates from rainbow trout (Oncorhynchus mykiss) processing by-product with different pretreatments: antioxidant activity and their effect on lipid and protein oxidation of raw fish emulsion. LWT 108, 120–128 (2019). https://doi.org/10.1016/j.fbio.2019.100418

    Article  CAS  Google Scholar 

  47. R.A. Sarteshnizi, M.A. Sahari, H. Ahmadi Gavlighi, J.M. Regenstein, M. Nikoo, C.H.C. Udenigwe, Influence of fish protein hydrolysate-pistachio green hull extract interactions on antioxidant activity and inhibition of α-glucosidase, α-amylase, and DPP-IV enzymes. LWT 142, 111019 (2021). https://doi.org/10.1016/j.lwt.2021.111019

    Article  CAS  Google Scholar 

  48. C.E. Salas, J.A. Badillo-Corona, G. Ramírez-Sotelo, C. Oliver-Salvador, Biologically active and antimicrobial peptides from plants. Biomed. Res. Int. (2015). https://doi.org/10.1155/2015/102129

    Article  PubMed  PubMed Central  Google Scholar 

  49. P. Lestari, Suyata, Antibacterial activity of hydrolysate protein from Etawa goat milk hydrolysed by crude extract bromelain. Mater. Sci. Eng. 509, 012111 (2019). https://doi.org/10.1088/1757-899X/509/1/012111

    Article  CAS  Google Scholar 

  50. A. Abbas, F. Anwar, N. Ahmad, Variation in physico-chemical composition and biological attributes of common basil essential oils produced by hydro-distillation and super critical fluid extraction. J. Essent. Oil Bear. Plants 20(1), 95–109 (2017). https://doi.org/10.1080/0972060X.2017.1280418

    Article  CAS  Google Scholar 

  51. M. Roy, A. Sarker, M.A.K. Azad, M.R. Shaheb, M.M. Hoque, Evaluation of antioxidant and antimicrobial properties of dark red kidney bean (Phaseolus vulgaris) protein hydrolysates. Food Meas. 14, 303–313 (2020). https://doi.org/10.1007/s11694-019-00292-4

    Article  Google Scholar 

  52. M. Salami, A.A. Moosavi-Movahedi, M.R. Ehsani, R. Yousefi, T. Haertle, J.M. Chobert, Improvement of the antimicrobial and antioxidant activities of camel and bovine whey proteins by limited proteolysis. J. Agric. Food Chem. 58, 3297–3302 (2010). https://doi.org/10.1021/jf9033283

    Article  CAS  PubMed  Google Scholar 

  53. L.A. Tejano, J.P. Peralta, E.E.S. Yap, Y.W. Chang, Bioactivities of enzymatic protein hydrolysates derived from Chlorella sorokiniana. Food Sci. Nutr. 7, 2381–2390 (2019). https://doi.org/10.1002/fsn3.1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. E.C.N. Rathnapala, D.U. Ahn, E.D.N.S. Abeyrathne, Enzymatic hydrolysis of ovotransferrin and the functional properties of its hydrolysates. Food Sci. Anim. Resour. 41(4), 608–622 (2021). https://doi.org/10.5851/kosfa.2021.e19

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Tarbiat Modares University for their support.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

MS-A: Conceptualization; Data curation; Formal analysis; Funding acquisition; Investigation; Methodology; Project administration; Resources; Software; Visualization; Writing. M-HA: Conceptualization; Formal analysis; Funding acquisition; Methodology; Project administration; Resources; Supervision; Validation. MS: Conceptualization; Formal analysis; Funding acquisition; Methodology; Resources; Supervision; Validation.

Corresponding author

Correspondence to Mohammad-Hossein Azizi.

Ethics declarations

Conflict of interest

The authors confirm that they have no conflicts of interest with respect to the work described in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seyedain-Ardabili, M., Azizi, MH. & Salami, M. Evaluation of antioxidant, α-amylase-inhibitory and antimicrobial activities of wheat gluten hydrolysates produced by ficin protease. Food Measure 17, 2892–2903 (2023). https://doi.org/10.1007/s11694-023-01829-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-01829-4

Keywords

Navigation