Skip to main content
Log in

Encapsulation for efficient spray drying of fruit juices with bioactive retention

  • Review Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Higher moisture content and inefficient post-harvest handling result in huge losses and scanty availability of the fruits. Spray drying is one such technique to handle the problem of post-harvest losses as powder production not only cuts the storage and transportation cost but also provides higher shelf stability. This review provides a detailed description of the process of spray drying and the effect of each parameter on powder characteristics. It also summarizes that addition of different wall materials resulted in the production of high-quality fruit juice powders.There are two major approaches material based i.e., encapsulation and process-based which aim to improve the economic value of spray drying by controlling the problems of stickiness, hygroscopicity, and thermal degradation of heat-sensitive compounds. Stickiness is majorly due to the low glass transition temperature of fruit juices (sugars and acids) which is elevated with the addition of encapsulating agents. Control over operational parameters is essential to deliver fruit powders within acceptable quantity and quality, both in terms of organoleptic and nutritional parameters. Various studies revealed that encapsulation act as protective shield for bioactive and probiotics retention. Maltodextrin (Dextrose equivalence 10–20) is reported as the most efficient drying aid. Prebiotics like nutriose and skimmed milk powder can also be used as drying aids. Most suitable conditions for spray drying of fruit juices like pomegranate, ber, and jamun are 25% maltodextrin at 124 °C, 8–10% maltodextrin at 160–190 °C, and 10% maltodextrin at 185 °C, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. National Horticulture Board, Area Production Statistics, (Department of Agriculture, Cooperation & Farmers’ Welfare, Horticulture Statistics Division, Ministry of Agriculture & Farmers’ Welfare (GOI), (2019–2020), http://nhb.gov.in/StatisticsViewer.aspx?enc=MWoUJibk35dW2g36TUJWAoZqESmAYFi7h2irlsmjlINTcFl1rG/kLbq8ZQbWUvuM Accessed 21–03–2022

  2. Horticulture Statistics, Area Production Statistics, (Department of Agriculture, Cooperation & Farmers’ Welfare, Horticulture Statistics Division, Ministry of Agriculture & Farmers’ Welfare (GOI), (2018), http://nhb.gov.in/Statistics.aspx?enc=WkegdyuHokljEtehnJoq0KWLU79sOQCy+W4MfOk01GFOWQSEvtp9tNHHoiv3p49g. Accessed on 20–11- 2020.

  3. FAOSTAT, Statistical Yearbook 2021 https://doi.org/10.4060/cb4477en-figB1 Accessed on 12–04–2022.

  4. Our world in data 2020 https://ourworldindata.org/agricultural#fruits-and-vegetables Accessed on 12–04–2022.

  5. European Parliament, At a Glance, International Year of Fruits and Vegetables (2021)https://www.europarl.europa.eu/RegData/etudes/ATAG/2021/689367/EPRS_ATA(2021)689367_EN.pdfAccessed on 21–03–2022

  6. N. Phisut, Spray drying technique of fruit juice powder: some factors influencing the properties of product. Int. Food Res. J. 19(4), 1297 (2012)

    CAS  Google Scholar 

  7. A. Sangamithra, S. Venkatachalam, S.G. John, K. Kuppuswamy, Foam mat drying of food materials: A review. J. Food Process. Preserv. 39(6), 3165–3174 (2015)

    Article  Google Scholar 

  8. J.M. Obón, M.R. Castellar, M. Alacid, J.A. FernándezLópez, Production of a red-purple food colorant from Opuntia stricta fruits by spray drying and its application in food model systems. J. Food Eng. 90, 471–479 (2009)

    Article  Google Scholar 

  9. A. Gharsallaoui, G. Roudaut, O. Chambin, A. Voilley, R. Saurel, Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Res. Int. 40(9), 1107–1121 (2007)

    Article  CAS  Google Scholar 

  10. I Filkova, AS Mujumdar in Industrial spray drying systems, ed. By A. S. Mujumdar Handbook of industrial drying, (CRC/Taylor & Francis: Boca Raton 2007)

  11. A.M. Goula, K.G. Adamopoulos, Spray drying of tomato pulp in dehumidified air: II. The effect on powder properties. J. Food Eng. 66, 35–42 (2005)

    Article  Google Scholar 

  12. I. Tontul, A. Topuz, Spray-drying of fruit and vegetable juices: Effect of drying conditions on the product yield and physical properties. Trends Food Sci. Technol. 63, 91–102 (2017)

    Article  CAS  Google Scholar 

  13. G. Chegini, B. Ghobadian, Spray dryer parameters for fruit juice drying. World J. Agricult. Sci. 3, 230–236 (2007)

    Google Scholar 

  14. R. Murugesan, V. Orsat, Spray drying for the production of nutraceutical ingredients—a review. Food Bioprocess Technol. 5(1), 3–14 (2012)

    Article  Google Scholar 

  15. K. Masters, Spray drying: The unit operation today. Indian J. Sci. Technol. 60, 53–63 (1986)

    Google Scholar 

  16. R.P. Patel, P.M. Patel, M.A. Suthar, Spray drying technology: an overview. Indian J. Sci. Technol. 10, 44–47 (2009)

    Article  Google Scholar 

  17. K. Cal, K. Sollohub, Spray drying technique. I: Hardware and process parameters. J. Pharmaceut. Sci. 99(2), 575–586 (2010)

    Article  CAS  Google Scholar 

  18. J. Du, Z.-Z. Ge, Z. Xu, B. Zou, Y. Zhang, C.-M. Li, Comparison of the efficiency of five different drying carriers on the spray drying of persimmon pulp powders. Drying Technol. 32(10), 1157–1166 (2014)

    Article  CAS  Google Scholar 

  19. I. Tontul, A. Topuz, C. Ozkan, M. Karacan, Effect of vegetable proteins on physical characteristics of spray-dried tomato powders. Food Sci. Technol. Int. 22(6), 516–524 (2016)

    Article  CAS  PubMed  Google Scholar 

  20. B. Adhikari, T. Howes, B.J. Wood, B.R. Bhandari, The effect of low molecular weight surfactants and proteins on surface stickiness of sucrose during powder formation through spray drying. J. Food Eng. 94(2), 135–143 (2009)

    Article  CAS  Google Scholar 

  21. K. Muzaffar, P. Kumar, Effect of soya protein isolate as a complementary drying aid of maltodextrin on spray drying of tamarind pulp. Drying Technol. 34(1), 142–148 (2015)

    Article  Google Scholar 

  22. A. Can Karaca, O. Guzel, M.M. Ak, Effects of processing conditions and formulation on spray drying of sour cherry juice concentrate. J. Sci. Food Agricult. 96(2), 449–455 (2016)

    Article  Google Scholar 

  23. E.L. Avila, M.C. Rodríguez, H.J.C. Velásquez, Influence of maltodextrin and spray drying process conditions on sugarcane juice powder quality. RevistaFacultad Nacional de AgronomíaMedellíng 68(1), 7509–7520 (2015)

    Google Scholar 

  24. S.E. Papadakis, C. Gardeli, C. Tzia, Spray drying of raisin juice concentrate. Drying Technol. 24(2), 173–180 (2006)

    Article  CAS  Google Scholar 

  25. H. Vardin, M. Yasar, Optimisation of pomegranate (Punica Granatum L.) juice spray-drying as affected by temperature and maltodextrin content. Int J Food Sci Technol 47(1), 167–176 (2012)

    Article  CAS  Google Scholar 

  26. S.Y. Chong, C.W. Wong, Production of Spray-Dried Sapodilla (Manilkara zapota) Powder from Enzyme-Aided Liquefied Puree. J. Food Process. Preserv. 39(6), 2604–2611 (2015)

    Article  CAS  Google Scholar 

  27. Z. Fang, B. Bhandari, Comparing the efficiency of protein and maltodextrin on spray drying of bayberry juice. Food Res. Int. 48(2), 478–483 (2012)

    Article  CAS  Google Scholar 

  28. S. Bhusari, K. Muzaffar, P. Kumar, Effect of carrier agents on physical and microstructural properties of spray dried tamarind pulp powder. Powder Technol. 266, 354–364 (2014)

    Article  CAS  Google Scholar 

  29. B. Adhikari, T. Howes, B.R. Bhandari, T.A.G. Langrish, Effect of addition of proteins on the production of amorphous sucrose powder through spray drying. J. Food Eng. 94(2), 144–153 (2009)

    Article  CAS  Google Scholar 

  30. M. Fazaeli, Z. Emam-Djomeh, A. Kalbasi-Ashtari, M. Omid, Effect of process conditions and carrier concentration for improving drying yield and other quality attributes of spray dried black mulberry (Morus nigra) juice. Int. J. Food Eng. 8, 1–20 (2012)

    Article  CAS  Google Scholar 

  31. P. Chen, L. Zhang, New evidences of glass transitions and microstructures of soy protein plasticized with glycerol. Macromol. Biosci. 5(3), 237–245 (2005)

    Article  CAS  PubMed  Google Scholar 

  32. M.O.P. Bicudo, A.D. Oliveira, F.P. Chaimsohn, M.R. Sierakowski, R. A. d Freitas, Microencapsulation of juçara (Euterpe edulis M) pulp by spray drying using different carriers and drying temperatures. Drying Technol. 33, 153–161 (2015)

    Article  CAS  Google Scholar 

  33. C.C. Ferrari, S.P.M. Germer, I.D. Alvim, F.Z. Vissotto, J.M. de Aguirre, Influence of carrier agents on the physicochemical properties of blackberry powder produced by spray drying. Int. J. Food Sci. Technol. 47, 1237–1245 (2012)

    Article  CAS  Google Scholar 

  34. M.A. Watson, J.M. Lea, K.L. Bett-Garber, Spray drying of pomegranate juice using maltodextrin/cyclodextrin blends as the wall material. Food Sci. Nutr. 5(3), 820–826 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. S. Santhalakshmy, S.J.D. Bosco, S. Francis, M. Sabeena, Effect of inlet temperature on physicochemical properties of spray-dried jamun fruit juice powder. Powder Technol. 274, 37–43 (2015)

    Article  CAS  Google Scholar 

  36. M. KhalilianMovahhed, M. Mohebbi, Spray drying and process optimization of carrot-celery juice. J Food Process Preservat 40, 212–225 (2016)

    Article  CAS  Google Scholar 

  37. P. Mishra, S. Mishra, C.L. Mahanta, Effect of maltodextrin concentration and inlet temperature during spray drying on physicochemical and antioxidant properties of amla (Emblica officinalis) juice powder. Food Bioprod. Process. 92(3), 252–258 (2014)

    Article  CAS  Google Scholar 

  38. A.M. Goula, K.G. Adamopoulos, Effect of maltodextrin addition during spray drying of tomato pulp in dehumidified air: II. Powder properties. Drying Technology 26, 726–737 (2008)

    Article  CAS  Google Scholar 

  39. Q. Bi, J. Chen, Q., Y. Zhou, X. Liu, X. Wu, R. Chen, Multi-objective optimization of spray drying of jujube (Zizyphus jujuba Miller) powder using response surface methodology. Food Bioproc Technol 7, 1807–1818 (2014)

    Article  Google Scholar 

  40. J. Bakar, S.C. Ee, K. Muhammad, D.M. Hashim, N. Adzahan, Spray-drying optimization for red pitaya peels (Hylocereus polyrhizus). Food Bioprocess Technol. 6, 1332–1342 (2013)

    Article  CAS  Google Scholar 

  41. A.D. Moghaddam, M. Pero, G.R. Askari, Optimizing spray drying conditions of sour cherry juice based on physicochemical properties, using response surface methodology (RSM). J. Food Sci. Technol. 54, 174–184 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. K. Muzaffar, B.V. Dinkarrao, P. Kumar, Optimization of spray drying conditions for production of quality pomegranate juice powder. Cogent Food & Agriculture 2, 1127583 (2016)

    Article  Google Scholar 

  43. A. Manickavasagan, K. Thangavel, S. Dev, D. AniesraniDelfiya, E. Nambi, V. Orsat, Physicochemical characteristics of date powder produced in a pilot scale spray dryer. Drying Technol. 33(9), 1114–1123 (2015)

    Article  CAS  Google Scholar 

  44. E. Horuz, A. Altan, M. Maskan, Spray drying and process optimization of unclarified pomegranate (Punica granatum) juice. Drying Technol. 30, 787–798 (2012)

    Article  CAS  Google Scholar 

  45. T.C. Kha, M.H. Nguyen, P.D. Roach, Effects of spray drying conditions on the physicochemical and antioxidant properties of the Gac (Momordica cochinchinensis) fruit aril powder. J. Food Eng. 98, 385–392 (2010)

    Article  CAS  Google Scholar 

  46. M. Ahmed, M.S. Akter, J.C. Lee, J.B. Eun, Encapsulation by spray drying of bioactive components, physicochemical and morphological properties from purple sweet potato. LWT-Food Sci. Technol. 43, 1307–1312 (2010)

    Article  CAS  Google Scholar 

  47. S. Yousefi, Z. Emam-Djomeh, S.M. Mousavi, Effect of carrier type and spray drying on the physicochemical properties of powdered and reconstituted pomegranate juice (Punica Granatum L.). J. Sci. Technol. 48(6), 677–684 (2011)

    Google Scholar 

  48. C.C. Ferrari, S.P. Marconi Germer, I.D. Alvim, J.M. de Aguirre, Storage stability of spray-dried blackberry powder produced with maltodextrin or gum arabic. Drying Technol. 31, 470–478 (2013)

    Article  CAS  Google Scholar 

  49. T. Moreno, E. de Paz, I. Navarro, S. Rodríguez-Rojo, A. Matías, C. Duarte, Spray drying formulation of polyphenols-rich grape marc extract: Evaluation of operating conditions and different natural carriers. Food and Bioprocess Technol. 9, 1–13 (2016)

    Article  Google Scholar 

  50. G. Chegini, B. Ghobadian, Effect of spray-drying conditions on physical properties of orange juice powder. Drying Technol. 23(3), 657–668 (2005)

    Article  CAS  Google Scholar 

  51. S.P. Tan, C.K. Tuyen, S.E. Parks, C. E., Stathopoulos, P. D. Roach, Effects of the spray-drying temperatures on the physiochemical properties of an encapsulated bitter melon aqueous extract powder. Powder Technol 281, 65–75 (2015)

    Article  CAS  Google Scholar 

  52. G. Miravet, M. Alacid, J.M. Obon, J.A. Fernandez-Lopez, Spray-drying of pomegranate juice with prebiotic dietary fibre. Int. J. Food Sci. Technol. 51(3), 633–640 (2016)

    Article  CAS  Google Scholar 

  53. W. Wang, Y. Jiang, W. Zhou, Characteristics of soy sauce powders spray dried using dairy whey proteins and maltodextrins as drying aids. J. Food Eng. 119, 724–730 (2013)

    Article  CAS  Google Scholar 

  54. K.G.H. Desai, H. Jin Park, Recent developments in microencapsulation of food ingredients. Drying Technol 23(7), 1361–1394 (2005)

    Article  CAS  Google Scholar 

  55. C. Anandharamakrishnan, S. Padma Ishwarya, Spray drying techniques for food ingredient encapsulation, (John Wiley & Sons, Ltd, U.S.A., 2015)

  56. Y. Srivastava, A.D. Semwal, G.K. Sharma, Application of various chemical and mechanical microencapsulation techniques in food sector-A review. Int. J. Food Fermentation Technol. 3(1), 1–8 (2013)

    Article  Google Scholar 

  57. F. Shahidi, X.Q. Han, Encapsulation of food ingredients. Crit. Rev. Food Sci. Nutr. 33, 501–547 (1993)

    Article  CAS  PubMed  Google Scholar 

  58. U. Lesmes, D.J. McClements, Structure–function relationships to guide rational design and fabrication of particulate food delivery systems. Trends Food Sci. Technol. 20(10), 448–457 (2009)

    Article  CAS  Google Scholar 

  59. J. Uhlemann, B. Schleifenbaum, H.J. Bertram, Flavor encapsulation technologies: an overview including recent developments. Perfumer and Flavorist. 27, 52–61 (2002)

    CAS  Google Scholar 

  60. B.V.N. Nagavarma, H.K. Yadav, A.V.L.S. Ayaz, L.S. Vasudha, H.G. Shivakumar, Different techniques for preparation of polymeric nanoparticles-a review. Asian J. Pharm. Clin. Res 5(3), 16–23 (2012)

    CAS  Google Scholar 

  61. V. Suganya, V. Anuradha, Microencapsulation and nanoencapsulation: a review. Int. J. Pharmaceut. Clin. Res. 9(3), 233–239 (2017)

    Google Scholar 

  62. Y.N. Konan, R. Gurny, E. Allémann, Preparation and characterization of sterile and freeze-dried sub-200 nm nanoparticles. Int. J. Pharm. 233(1–2), 239–252 (2002)

    Article  CAS  PubMed  Google Scholar 

  63. P.B. Salunkhe, P.S. Shembekar, A review on effect of phase change material encapsulation on the thermal performance of a system. Renewable and Sustainable Energy Rev 16(8), 5603–5616 (2012)

    Article  CAS  Google Scholar 

  64. T.E. Alam, J.S. Dhau, D.Y. Goswami, E. Stefanakos, Macroencapsulation and characterization of phase change materials for latent heat thermal energy storage systems. Appl. Energy 154, 92–101 (2015)

    Article  CAS  Google Scholar 

  65. H. Umer, H. Nigam, A.M. Tambol, M.S.M. Nainar, Microencapsulation: Process, techniques and applications. Int. J. Res. Pharmaceut. Biomed. Sci. 2(2), 474–481 (2011)

    Google Scholar 

  66. U.R. Pothakamury, G.V. Barbosa-Canovas, Fundamental aspects of controlled release in foods. Trends Food Sci. Technol. 6, 397–406 (1995)

    Article  CAS  Google Scholar 

  67. L. Brannon-Peppas, in Controlled Release in the Food and Cosmetics Industries, ed. By M. A.El-Nokaly, D. M. Piatt, B. A. Charpentier, Properties and applications: Polymeric Delivery Systems (ACS Symposium Series 520, American Chemical Society: Washington, D.C., 1993) pp. 52.

  68. C. Mannheim, N. Passy, in Choice of packages for foods with specific considerations of water activity, ed. ByD. Simatos, J. L. MultonProperties of Water in Foods, (MartinusNijhoff Publishers: Dordrecht, Netherlands, 1985) pp. 375–391.

  69. B.F. Gibbs, S. Kermasha, I. Alli, C.N. Mulligan, Pressure-and heat-induced gelation of mixed beta-lactoglobulin/polysaccharide solutions: scanning electron microscopy of gels. Food Hydrocolloids 13, 339–351 (1999)

    Article  Google Scholar 

  70. B. Pascat, in Study of some factors affecting permeability, eds. ByM. Mathlouthi, Food Packaging and Preservation: Theory and Practice (Elsevier Applied Science Publishers: London, 1986) pp. 7.

  71. L.T. Fan, S.K. Singh, Controlled Release: A Quantitative Treatment (Springer-Verlag, Berlin Heidelberg, 1989)

    Book  Google Scholar 

  72. K.B. Roos, Effect of texture and microstructure on flavour retention and release. Int. Dairy J. 13, 593–605 (2003)

    Article  Google Scholar 

  73. B.F. Gibbs, S. Kermasha, I. Alli, C.N. Mulligan, Encapsulation in the food industry. Int. J. Food Sci. Nutrition 50, 213–224 (1999)

    Article  CAS  Google Scholar 

  74. B.R. Bhandari, N. Datta, T. Howes, Problems associated with spray drying of sugar-rich foods. Drying Technol. 15(2), 671–684 (1997)

    Article  CAS  Google Scholar 

  75. M. Sobulska, I. Zbicinski, Advances in spray drying of sugar-rich products. Drying Technology, 1–26 (2020)

  76. Y. H. Roos, S. Drusch, in Food components and polymers, Phase transitions in foods,(Academic Press. Waltham, US, 2015) pp. 117)

  77. Y. Ismail, L.J. Mauer, Phase transitions of ascorbic acid and sodium ascorbate in a polymer matrix and effects on vitamin degradation. J. Food Process Eng 43(5), e13073 (2020)

    Article  CAS  Google Scholar 

  78. A. Kumar, A. De, S. Mozumdar, Synthesis of acrylate guar-gum for delivery of bio-active molecules. Bull. Mater. Sci. 38(4), 1025–1032 (2015)

    Article  CAS  Google Scholar 

  79. D.A. Pai, V.R. Vangala, J.W. Ng, W.K. Ng, R.B. Tan, Resistant maltodextrin as a shell material for encapsulation of naringin: Production and physicochemical characterization. J. Food Eng. 161, 68–74 (2015)

    Article  CAS  Google Scholar 

  80. F. Avaltroni, P.E. Bouquerand, V. Normand, Maltodextrin molecular weight distribution influence on the glass transition temperature and viscosity in aqueous solutions. Carbohyd. Polym. 58(3), 323–334 (2004)

    Article  CAS  Google Scholar 

  81. The effect of drying agents on powder properties, K. Samborska, P. Gajek, A. Kami_nska-Dw_orznicka, Spray drying of honey. Polish J. Food Nutrit. Sci. 65, 109–118 (2015)

    Google Scholar 

  82. A.K. Shrestha, T. Ua-Arak, B.P. Adhikari, T. Howes, B.R. Bhandari, Glass transition behavior of spray dried orange juice powder measured by differential scanning calorimetry (DSC) and thermal mechanical compression test (TMCT). Int. J. Food Prop. 10(3), 661–673 (2007)

    Article  CAS  Google Scholar 

  83. G. Caliskan, S.N. Dirim, The effects of the different drying conditions and the amounts of maltodextrin addition during spray drying of sumac extract. Food Bioprod. Process. 91(4), 539–548 (2013)

    Article  CAS  Google Scholar 

  84. M.A. Magerramov, A.I. Abdulagatov, N.D. Azizov, I.M. Abdulagatov, Effect of temperature, concentration, and pressure on the viscosity of pomegranate and pear juice concentrates. J. Food Eng. 80(2), 476–489 (2007)

    Article  CAS  Google Scholar 

  85. G.R. Chegini, J. Khazaei, B. Ghobadian, A.M. Goudarzi, Prediction of process and product parameters in an orange juice spray dryer using artificial neural networks. J. Food Eng. 84(4), 534–543 (2008)

    Article  Google Scholar 

  86. A.M. Goula, K.G. Adamopoulos, A new technique for spry drying orange juice concentrate. Innov. Food Sci. Emerg. Technol. 11(2), 342–351 (2010)

    Article  CAS  Google Scholar 

  87. A. Jedlińska, K. Samborska, A. Wieczorek, A. Wiktor, E. Ostrowska-Ligęza, W. Jamróz, D. Witrowa-Rajchert, The application of dehumidified air in rapeseed and honeydew honey spray drying-Process performance and powders properties considerations. J. Food Eng. 245, 80–87 (2019)

    Article  Google Scholar 

  88. K. Samborska, A. Barańska, K. Szulc, E. Jankowska, M. ruszkowska, E. strowska-Ligęza, A. Jedlińska, Reformulation of spray-dried apple concentrate and honey for the enhancement of drying process performance and the physicochemical properties of powders. J. Sci. Food Agricult. 100(5), 2224–2235 (2020)

    Article  CAS  Google Scholar 

  89. S. Pandey, A. Poonia, S. Rai, Optimization of spray drying conditions for the production of quality ber (ZizyphusmauritianaLamk.) fruit powder. Nutrition & Food Science 49, 1088–1098 (2019)

    Article  Google Scholar 

  90. V.K. Singh, B.L. Mandhyan, P. Sheela, R.B. Singh, Process development for spray drying of Ber (Ziziphus jujube L.) juice. Am. J. Food Technol. 8(3), 183–191 (2013)

    Article  CAS  Google Scholar 

  91. J. Zhang, C. Zhang, X. Chen, S.Y. Quek, Effect of spray drying on phenolic compounds of cranberry juice and their stability during storage. J. Food Eng. 269, 109744 (2020)

    Article  CAS  Google Scholar 

  92. S. Moghbeli, S.M. Jafari, Y. Maghsoudlou, D. Dehnad, Influence of pectin-whey protein complexes and surfactant on the yield and microstructural properties of date powder produced by spray drying. J. Food Eng. 242, 124–132 (2019)

    Article  CAS  Google Scholar 

  93. S.R. Dev, M. Annamalai, V. Orsat, V.G. Raghavan, M. Ngadi, Nanostructural characterization and sorption isotherm analysis of spray-dried date powder. Drying Technol. 36(13), 1531–1541 (2018)

    Article  CAS  Google Scholar 

  94. N. Yusof, N.M. Adzahan, K. Muhammad, Optimization of Spray Drying parameters for white dragon fruit (Hylocereus undatus) juice powder using response surface methodology (RSM). Malaysian J. Applied Sci. 5(2), 45–56 (2020)

    Article  Google Scholar 

  95. P. Moser, R.T.D. Souza, V.R. Nicoletti Telis, Spray drying of grape juice from hybrid cv. BRS Violeta: microencapsulation of anthocyanins using protein/maltodextrin blends as drying aids. J. Food Proc. Preservation 41(1), 12852 (2017)

    Article  Google Scholar 

  96. C.S. Singh, V.K. Paswan, D.C. Rai, Process optimization of spray dried Jamun (Syzygiumcumini L.) pulp powder. LWT 109, 1–6 (2019)

    Article  CAS  Google Scholar 

  97. H.S. Sathyashree, C.T. Ramachandra, P.F. UdaykumarNidoni, N. Naik, Rehydration properties of spray dried sweet orange juice. J. Pharmacognosy Phytochemistry 7(3), 120–124 (2018)

    CAS  Google Scholar 

  98. S. Santos Monteiro, Y. Albertina Silva Beserra, H. Miguel Lisboa Oliveira, M. A. D. B. Pasquali, Production of probiotic passion fruit (Passiflora edulis Sims f Flavicarpa Deg) drink using Lactobacillus reuteri and microencapsulation via spray drying. Foods 9(3), 335 (2020)

    Article  PubMed Central  Google Scholar 

  99. S.M. Jafari, M.G. Ghalenoei, D. Dehnad, Influence of spray drying on water solubility index, apparent density, and anthocyanin content of pomegranate juice powder. Powder Technol. 311, 59–65 (2017)

    Article  CAS  Google Scholar 

  100. H. C. S. Araujo, M. S. Jesus, M. T. S. Leite Neta, N. C. Gualberto, C. M. S. Matos, M. Rajan,... &N. Narain,Effect of maltodextrin and gum arabic on antioxidant activity and phytochemical profiles of spray-dried powders of sapota (Manilkara zapota) fruit juice. Drying Technology 1–13 (2020).

  101. Y. Li, B. Tang, J. Chen, P. Lai, Microencapsulation of plum (Prunus salicinaLindl.) phenolics by spray drying technology and storage stability. Food Sci. Technol. 38(3), 530–536 (2018)

    Article  Google Scholar 

  102. N.P. Minh, T.T.Y. Nhi, T.N. Nguyen, S.N. Bich, D.T.T. Truc, Some factors influencing the properties of dried watermelon powder during spray drying. J. Pharm. Sci. Res. 11(4), 1416–1421 (2019)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Ministry of Food Processing Industries, New Delhi for fellowship and financial support.

Funding

This work was supported by the Ministry of Food Processing Industries, India, under grant number F.No. Q-11/4/2020-R&D (1/69368/2020) Dated-13.05.2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soma Srivastava.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, S., Bansal, M., Jain, D. et al. Encapsulation for efficient spray drying of fruit juices with bioactive retention. Food Measure 16, 3792–3814 (2022). https://doi.org/10.1007/s11694-022-01481-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01481-4

Keywords

Navigation