Skip to main content
Log in

Investigation on total phenolic content, antioxidant activity, and emulsifying capacity of sodium alginate from Nizimuddinia zanardini during microwave-assisted extraction; optimization and statistical modeling

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

In recent years, the use of microwave technology (MAE) for the extraction of bioactive compounds from algae has shown great research interest due to its high and fast extraction performance. Alginate is a marine polysaccharide that has found numerous applications in the food industry due to its favorable properties. Although the MAE of alginate has been reported in the previous scientific papers, none of them investigated the effects of MAE variables on the functional properties of the extracted polymer. Therefore, the present study aimed to optimize microwave-assisted extraction (MAE) conditions of sodium alginate for its antioxidant activity (AA), emulsifying capacity (EC), and total phenolic contents (TPC). The Box–Behnken design was used to study the effects of four variables including extraction temperature (45–75 °C), microwave power (300–500 W), extraction time (1–30 min), and solvent-solid ratio (10–30 mL/g). The statistical optimization revealed that extraction with the temperature of 22 °C and the solvent-solid ratio of 20 mL/g for 22 min with a microwave power of 412 W was the best combination of these variables. The corresponding experimental values for AA, EC, and TPC were 65.24%, 65.15%, and 1.560 g GAE/100 g DM of sodium alginate, respectively. Predicted values were in close agreement with experimental ones. Developed models were significant (p < 0.05) with high regression coefficients (R2 > 0.9) and insignificant lack of fits that confirm the validity of RSM models to optimize extraction conditions of sodium alginate from N. zanardini.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Mabeau, J. Fleurence, Seaweed in food products: biochemical and nutritional aspects. Trends Food Sci. Technol. 4(4), 103–107 (1993). https://doi.org/10.1016/0924-2244(93)90091-N

    Article  CAS  Google Scholar 

  2. S.L. Holdt, S. Kraan, Bioactive compounds in seaweed: functional food applications and legislation. J. Appl. Phycol. 23(3), 543–597 (2011). https://doi.org/10.1007/S10811-010-9632-5

    Article  CAS  Google Scholar 

  3. N. Rajapakse, S.K. Kim, Nutritional and digestive health benefits of seaweed. Adv. Food Nutr. Res. 64, 17–28 (2011). https://doi.org/10.1016/B978-0-12-387669-0.00002-8

    Article  CAS  PubMed  Google Scholar 

  4. B.K. Tiwari, D.J. Troy, Seaweed sustainability—food and nonfood applications. Seaweed Sustain. Food Non-Food Appl. (2015). https://doi.org/10.1016/B978-0-12-418697-2.00001-5

    Article  Google Scholar 

  5. R.A. Khajouei et al., Extraction and characterization of an alginate from the Iranian brown seaweed Nizimuddinia zanardini. Int. J. Biol. Macromol. 118, 1073–1081 (2018). https://doi.org/10.1016/J.IJBIOMAC.2018.06.154

    Article  CAS  PubMed  Google Scholar 

  6. P. Torabi, N. Hamdami, J. Keramat, Microwave-assisted extraction of sodium alginate from brown macroalgae Nizimuddinia zanardini, optimization and physicochemical properties. Sep. Sci. Technol. (2021). https://doi.org/10.1080/01496395.2021.1954020

    Article  Google Scholar 

  7. M. Alboofetileh et al., Effect of different non-conventional extraction methods on the antibacterial and antiviral activity of fucoidans extracted from Nizamuddinia zanardinii. Int. J. Biol. Macromol. 124, 131–137 (2019). https://doi.org/10.1016/J.IJBIOMAC.2018.11.201

    Article  CAS  PubMed  Google Scholar 

  8. K.Y. Lee, D.J. Mooney, Alginate: properties and biomedical applications. Prog. Polym. Sci. 37(1), 106–126 (2012). https://doi.org/10.1016/J.PROGPOLYMSCI.2011.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. T.A. Fenoradosoa et al., Extraction and characterization of an alginate from the brown seaweed Sargassum turbinarioides Grunow. J. Appl. Phycol. 22(2), 131–137 (2009). https://doi.org/10.1007/S10811-009-9432-Y

    Article  Google Scholar 

  10. C. Ouwerx, N. Velings, M.M. Mestdagh, M.A.V. Axelos, Physico-chemical properties and rheology of alginate gel beads formed with various divalent cations. Polym. Gels Networks 6(5), 393–408 (1998). https://doi.org/10.1016/S0966-7822(98)00035-5

    Article  CAS  Google Scholar 

  11. S. Hertzberg, L. Kvittingen, T. Anthonsen, G. Skjåk-Bræk, Alginate as immobilization matrix and stabilizing agent in a two-phase liquid system: application in lipase-catalysed reactions. Enzyme Microb. Technol. 14(1), 42–47 (1992). https://doi.org/10.1016/0141-0229(92)90024-I

    Article  CAS  PubMed  Google Scholar 

  12. M.A. Fawzy, M. Gomaa, A.F. Hifney, K.M. Abdel-Gawad, Optimization of alginate alkaline extraction technology from Sargassum latifolium and its potential antioxidant and emulsifying properties. Carbohydr. Polym. 157, 1903–1912 (2017). https://doi.org/10.1016/J.CARBPOL.2016.11.077

    Article  CAS  PubMed  Google Scholar 

  13. A. Tirgar, F. Golbabaei, J. Hamedi, K. Nourijelyani, Removal of airborne hexavalent chromium using alginate as a biosorbent. Int. J. Environ. Sci. Technol. 8(2), 237–244 (2011). https://doi.org/10.1007/BF03326212

    Article  CAS  Google Scholar 

  14. A. Mohammed, A. Rivers, D.C. Stuckey, K. Ward, Alginate extraction from Sargassum seaweed in the caribbean region: optimization using response surface methodology. Carbohydr. Polym. (2020). https://doi.org/10.1016/J.CARBPOL.2020.116419

    Article  PubMed  Google Scholar 

  15. C. Leonelli, P. Veronesi, G. Cravotto, Microwave-assisted extraction: An introduction to dielectric heating. Food Eng. Ser. (2013). https://doi.org/10.1007/978-1-4614-4830-3_1

    Article  Google Scholar 

  16. Y. Yuan, D. Macquarrie, Microwave assisted extraction of sulfated polysaccharides (fucoidan) from Ascophyllum nodosum and its antioxidant activity. Carbohydr. Polym. 129, 101–107 (2015). https://doi.org/10.1016/J.CARBPOL.2015.04.057

    Article  CAS  PubMed  Google Scholar 

  17. K. Hayat et al., Effect of microwave treatment on phenolic content and antioxidant activity of citrus mandarin pomace. Food Chem 123(2), 423–429 (Nov. 2010). https://doi.org/10.1016/J.FOODCHEM.2010.04.060

    Article  CAS  Google Scholar 

  18. D.P. Xu, J. Zheng, Y. Zhou, Y. Li, S. Li, H. Bin Li, Ultrasound-assisted extraction of natural antioxidants from the flower of Limonium sinuatum: optimization and comparison with conventional methods. Food Chem 217, 552–559 (2017). https://doi.org/10.1016/J.FOODCHEM.2016.09.013

    Article  CAS  PubMed  Google Scholar 

  19. C.-N. Zhao, J.-J. Zhang, Y. Li, X. Meng, H.-B. Li, Microwave-assisted extraction of phenolic compounds from Melastoma sanguineum fruit: optimization and identification. Mol. A J Synth. Chem. Nat. Prod. Chem. 23(10), 2498 (2018). https://doi.org/10.3390/MOLECULES23102498

    Article  Google Scholar 

  20. Y. Li, S. Li, S.J. Lin, J.J. Zhang, C.N. Zhao, H.B. Li, Microwave-assisted extraction of natural antioxidants from the exotic Gordonia axillaris fruit: optimization and identification of phenolic compounds. Molecules 22(9), 1481 (2017). https://doi.org/10.3390/MOLECULES22091481

    Article  PubMed Central  Google Scholar 

  21. B. Ren, C. Chen, C. Li, X. Fu, L. You, R.H. Liu, Optimization of microwave-assisted extraction of Sargassum thunbergii polysaccharides and its antioxidant and hypoglycemic activities. Carbohydr. Polym. 173, 192–201 (Oct. 2017). https://doi.org/10.1016/j.carbpol.2017.05.094

    Article  CAS  PubMed  Google Scholar 

  22. O.R. Alara, N.H. Abdurahman, O.A. Olalere, Optimization of microwave-assisted extraction of flavonoids and antioxidants from Vernonia amygdalina leaf using response surface methodology. Food Bioprod. Process. 107, 36–48 (2018). https://doi.org/10.1016/J.FBP.2017.10.007

    Article  CAS  Google Scholar 

  23. P. Kaushik, K. Dowling, R. Adhikari, C.J. Barrow, B. Adhikari, Effect of extraction temperature on composition, structure and functional properties of flaxseed gum. Food Chem 215, 333–340 (2017). https://doi.org/10.1016/J.FOODCHEM.2016.07.137

    Article  CAS  PubMed  Google Scholar 

  24. Z. Tu, Y. Hu, H. Wang, X. Huang, S. Xia, P. Niu, Microwave heating enhances antioxidant and emulsifying activities of ovalbumin glycated with glucose in solid-state. J Food Sci Technol 52(3), 1453–1461 (2013). https://doi.org/10.1007/S13197-013-1120-X

    Article  PubMed  PubMed Central  Google Scholar 

  25. E. Shekarforoush et al., Rheological properties and emulsifying activity of gum karaya (Sterculia Urens) in aqueous system and oil in water emulsion: heat treatment and microwave modification. Int J Food Prop 19(3), 662–679 (2015). https://doi.org/10.1080/10942912.2015.1038836

    Article  CAS  Google Scholar 

  26. E. Nguyen, O. Jones, Y.H.B. Kim, F.S. Martin-Gonzalez, A.M. Liceaga, Impact of microwave-assisted enzymatic hydrolysis on functional and antioxidant properties of rainbow trout Oncorhynchus mykiss by-products. Fish. Sci. 83(2), 317–331 (2017). https://doi.org/10.1007/S12562-017-1067-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to extend their gratitude to the Isfahan University of Technology for their cooperation and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Payam Torabi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torabi, P., Hamdami, N. & Keramat, J. Investigation on total phenolic content, antioxidant activity, and emulsifying capacity of sodium alginate from Nizimuddinia zanardini during microwave-assisted extraction; optimization and statistical modeling. Food Measure 16, 1549–1558 (2022). https://doi.org/10.1007/s11694-021-01255-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-01255-4

Keywords

Navigation