Skip to main content
Log in

Application of hyperspectral imaging in the detection of aflatoxin B1 on corn seed

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Contamination of aflatoxins has important effect on the quality of corn seed. In this study, hyperspectral imaging technology was used to detect aflatoxin B1 (AFB1) with different concentrations (100, 50, 30, 20 and 10 μg/kg) on corn seeds. The near-infrared hyperspectral data, which were collected from the corn seed samples, were processed by image segmentation method. Then, the spectra in the range of 460–929 nm in the region of seed embryo were extracted from the seed-embryo hyperspectral image. Next, the modeling performance of two schemes under four preprocessing methods (none, multiplicative scatter correction (MSC), standard normal variate (SNV), and 5–3 smoothing), four feature wavelength extraction methods (full wavelength, principal component analysis (PCA), X-loading, and successive projection algorithm (SPA)) and three chemometrics methods (k-nearest neighbor (KNN), linear discriminant analysis (LDA), and support vector machine (SVM)) were compared. The optimal result of the testing set is in the case of “5–3 smoothing” pretreatment, SPA method, and SVM model, with 84.1%, 77.8% and 87.3%, 83.0% accuracies of the training set and testing set respectively in scheme 1 and scheme 2. The optimal accuracy of the testing set obtained by “SPA method” is 3.5% higher than in the case of “full wavelength” method, reducing the model calculations and improving the model accuracy to a certain extent. These 10 wavelengths (460.41, 491.50, 594.72, 617.60, 679.77, 726.69, 739.00, 772.43, 926.10, and 929.03 nm) obtained by “SPA method” provide the possibility for real-time online monitoring AFB1 contamination on corn seeds in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Abrar, F.M. Anjum, M.S. Butt, I. Pasha, M.A. Randhawa, F. Saeed, K. Waqas, Aflatoxins: biosynthesis, occurrence, toxicity, and remedies. Crit. Rev. Food Sci. Nutr. 53(8), 862–874 (2013). https://doi.org/10.1080/10408398.2011.563154

    Article  CAS  PubMed  Google Scholar 

  2. Q. Wu, L. Xie, H. Xu, Determination of toxigenic fungi and aflatoxins in nuts and dried fruits using imaging and spectroscopic techniques. Food Chem. 252, 228–242 (2018). https://doi.org/10.1016/j.foodchem.2018.01.076

    Article  CAS  PubMed  Google Scholar 

  3. X. He, C. Yan, X. Jiang, F. Shen, J. You, Y. Fang, Classification of aflatoxin B1 naturally contaminated peanut using visible and near-infrared hyperspectral imaging by integrating spectral and texture features. Infrared Phys. Technol. 114, 103652 (2021). https://doi.org/10.1016/j.infrared.2021.103652

    Article  CAS  Google Scholar 

  4. H.K. Abbas, R.D. Cartwright, W. Xie, W. Thomas Shier, Aflatoxin and fumonisin contamination of corn (maize, Zea mays) hybrids in Arkansas. Crop Prot. 25(1), 1–9 (2006). https://doi.org/10.1016/j.cropro.2005.02.009

    Article  CAS  Google Scholar 

  5. S.M. Herzallah, Determination of aflatoxins in eggs, milk, meat and meat products using HPLC fluorescent and UV detectors. Food Chem. 114(3), 1141–1146 (2009). https://doi.org/10.1016/j.foodchem.2008.10.077

    Article  CAS  Google Scholar 

  6. A. Waśkiewicz, M. Beszterda, P. Goliński, Occurrence of fumonisins in food—an interdisciplinary approach to the problem. Food Control 26(2), 491–499 (2012). https://doi.org/10.1016/j.foodcont.2012.02.007

    Article  CAS  Google Scholar 

  7. L. Xie, M. Chen, Y. Ying, Development of methods for determination of aflatoxins. Crit. Rev. Food Sci. Nutr. 56(16), 2642–2664 (2016)

    Article  CAS  Google Scholar 

  8. D. Kimuli, W. Wang, K.C. Lawrence, S. Yoon, X. Ni, G.W. Heitschmidt, Utilisation of visible/near-infrared hyperspectral images to classify aflatoxin B1 contaminated maize kernels. Biosys. Eng. 166, 150–160 (2018). https://doi.org/10.1016/j.biosystemseng.2017.11.018

    Article  Google Scholar 

  9. D. Kimuli, W. Wang, W. Wang, H. Jiang, X. Zhao, X. Chu, Application of SWIR hyperspectral imaging and chemometrics for identification of aflatoxin B1 contaminated maize kernels. Infrared Phys. Technol. 89, 351–362 (2018). https://doi.org/10.1016/j.infrared.2018.01.026

    Article  CAS  Google Scholar 

  10. I. Orina, M. Manley, P.J. Williams, Non-destructive techniques for the detection of fungal infection in cereal grains. Food Res. Int. 100, 74–86 (2017). https://doi.org/10.1016/j.foodres.2017.07.069

    Article  CAS  PubMed  Google Scholar 

  11. T. Falade, Y. Sultanbawa, M. Fletcher, G. Fox, Near infrared spectrometry for rapid non-invasive modelling of Aspergillus-contaminated maturing kernels of Maize (Zea mays L.). Agriculture 7(9), 77 (2017). https://doi.org/10.3390/agriculture7090077

    Article  CAS  Google Scholar 

  12. V. Fernández-Ibañez, A. Soldado, A. Martínez-Fernández, B. de la Roza-Delgado, Application of near infrared spectroscopy for rapid detection of aflatoxin B1 in maize and barley as analytical quality assessment. Food Chem. 113(2), 629–634 (2009). https://doi.org/10.1016/j.foodchem.2008.07.049

    Article  CAS  Google Scholar 

  13. T.C. Pearson, D.T. Wicklow, E.B. Maghirang, F. Xie, F.E. Dowell, Detecting aflatoxin in single corn kernels by transmittance and reflectance spectroscopy. Trans. ASAE 44(5), 1247–1254 (2001). https://doi.org/10.13031/2013.6418

    Article  CAS  Google Scholar 

  14. T.C. Pearson, D.T. Wicklow, M.C. Pasikatan, Reduction of aflatoxin and fumonisin contamination in yellow corn by high speed dual wavelength sorting. Cereal Chem. 81(4), 490–498 (2004). https://doi.org/10.1094/CCHEM.2004.81.4.490

    Article  CAS  Google Scholar 

  15. X. Chu, W. Wang, S. Yoon, X. Ni, G.W. Heitschmidt, Detection of aflatoxin B1 (AFB1) in individual maize kernels using short wave infrared (SWIR) hyperspectral imaging. Biosys. Eng. 157, 13–23 (2017). https://doi.org/10.1016/j.biosystemseng.2017.02.005

    Article  Google Scholar 

  16. L. Wang, D. Sun, H. Pu, Z. Zhu, Application of hyperspectral imaging to discriminate the variety of maize seeds. Food Anal. Methods 9(1), 225–234 (2016). https://doi.org/10.1007/s12161-015-0160-4

    Article  Google Scholar 

  17. X. Yang, H. Hong, Z. You, F. Cheng, Spectral and image integrated analysis of hyperspectral data for waxy corn seed variety classification. Sensors 15(7), 15578–15594 (2015). https://doi.org/10.3390/s150715578

    Article  PubMed  PubMed Central  Google Scholar 

  18. J. Zhang, L. Dai, F. Cheng, Corn seed variety classification based on hyperspectral reflectance imaging and deep convolutional neural network. J. Food Meas. Charact. 15(1), 484–494 (2021). https://doi.org/10.1007/s11694-020-00646-3

    Article  Google Scholar 

  19. J. Zhang, L. Dai, F. Cheng, Identification of corn seeds with different freezing damage degree based on hyperspectral reflectance imaging and deep learning method. Food Anal. Methods 14(2), 389–400 (2021). https://doi.org/10.1007/s12161-020-01871-8

    Article  CAS  Google Scholar 

  20. Z. Wang, X. Tian, S. Fan, C. Zhang, J. Li, Maturity determination of single maize seed by using near-infrared hyperspectral imaging coupled with comparative analysis of multiple classification models. Infrared Phys. Technol. 112, 103596 (2021). https://doi.org/10.1016/j.infrared.2020.103596

    Article  CAS  Google Scholar 

  21. J. Zhang, L. Dai, F. Cheng, Classification of frozen corn seeds using hyperspectral VIS/NIR reflectance imaging. Molecules 24(1), 149 (2019). https://doi.org/10.3390/molecules24010149

    Article  PubMed Central  Google Scholar 

  22. C. McGoverin, M. Manley, Classification of maize kernel hardness using near infrared hyperspectral imaging. J. Near Infrared Spectrosc. 20(5), 529 (2012). https://doi.org/10.1255/jnirs.1018

    Article  CAS  Google Scholar 

  23. F. Zhu, H. Yao, Z. Hruska, R. Kincaid, R. Brown, D. Bhatnagar, T. Cleveland, Integration of fluorescence and reflectance visible near-infrared (VNIR) hyperspectral images for detection of aflatoxins in corn kernels. Trans. Asabe 59(3), 785–794 (2016)

    Article  CAS  Google Scholar 

  24. A. Candolfi, R. De Maesschalck, D. Jouan-Rimbaud, P.A. Hailey, D.L. Massart, The influence of data pre-processing in the pattern recognition of excipients near-infrared spectra. J. Pharm. Biomed. Anal. 21(1), 115–132 (1999). https://doi.org/10.1016/s0731-7085(99)00125-9

    Article  CAS  PubMed  Google Scholar 

  25. H. Chen, Q. Song, G. Tang, Q. Feng, L. Lin, The combined optimization of Savitzky-Golay smoothing and multiplicative scatter correction for FT-NIR PLS models. ISRN Spectrosc. 2013, 1–9 (2013). https://doi.org/10.1155/2013/642190

    Article  CAS  Google Scholar 

  26. S. Wold, K. Esbensen, P. Geladi, Principal component analysis. Chemom. Intell. Lab. Syst. 2(1–3), 37–52 (1987). https://doi.org/10.1016/0169-7439(87)80084-9

    Article  CAS  Google Scholar 

  27. D. Liu, D. Sun, X. Zeng, Recent advances in wavelength selection techniques for hyperspectral image processing in the food industry. Food Bioprocess Technol. 7(2), 307–323 (2014). https://doi.org/10.1007/s11947-013-1193-6

    Article  Google Scholar 

  28. J. Riba Ruiz, T. Canals, R. Cantero Gomez, Comparative study of multivariate methods to identify paper finishes using infrared spectroscopy. IEEE Trans. Instrum. Meas. 61(4), 1029–1036 (2012). https://doi.org/10.1109/TIM.2011.2173048

    Article  Google Scholar 

  29. N. Mohanty, L.S. John, R. Manmatha, T.M. Rath, Shape-based image classification and retrieval. Handb. Stat. 31, 249–267 (2013). https://doi.org/10.1016/B978-0-444-53859-8.00010-2

    Article  Google Scholar 

  30. C.J.C. Burges, A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 2(2), 121–167 (1998). https://doi.org/10.1023/A:1009715923555

    Article  Google Scholar 

  31. M.E. Mavroforakis, S. Theodoridis, A geometric approach to Support Vector Machine (SVM) classification. IEEE Trans. Neural Netw. 17(3), 671–682 (2006). https://doi.org/10.1109/TNN.2006.873281

    Article  PubMed  Google Scholar 

  32. L. Smeesters, W. Meulebroeck, S. Raeymaekers, H. Thienpont, Optical detection of aflatoxins in maize using one- and two-photon induced fluorescence spectroscopy. Food Control 51, 408–416 (2015). https://doi.org/10.1016/j.foodcont.2014.12.003

    Article  CAS  Google Scholar 

  33. J. Jiang, X. Qiao, R. He, Use of near-infrared hyperspectral images to identify moldy peanuts. J. Food Eng. 169, 284–290 (2016). https://doi.org/10.1016/j.jfoodeng.2015.09.013

    Article  CAS  Google Scholar 

  34. J. Zhang, F. Cheng, Application of hyperspectral reflectance imaging and chemometric methods to classify the corn seed variety. ASABE 2020 Annual International Meeting (2020). https://doi.org/10.13031/aim.202000327

Download references

Funding

This research was funded by the National Natural Science Foundation of China (Grant No. 61873231).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Cheng.

Ethics declarations

Conflict of interest

Jun Zhang declares that he has no conflict of interest. Binbo Xu declares that he has no conflict of interest. Zhiying Wang declares that she has no conflict of interest. Fang Cheng declares that she has no conflict of interest.

Ethical approval

This article does not contain any studies with human or animal subjects.

Informed consent

Informed consent was obtained from all individual participants included in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Xu, B., Wang, Z. et al. Application of hyperspectral imaging in the detection of aflatoxin B1 on corn seed. Food Measure 16, 448–460 (2022). https://doi.org/10.1007/s11694-021-01171-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-01171-7

Keywords

Navigation