Skip to main content
Log in

Post-harvest fungal occurrence on commercial strawberry cultivars grown in Australia: impact of phytochemical composition

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The aim of this study was to isolate and identify the spoilage fungi from four Australian grown commercial strawberry cultivars, namely Fortuna, Festival, Ruby Gem, and Red Rhapsody, and to investigate their correlation with the studied physicochemical properties in all four cultivars. To further understand the differences in postharvest resistance behavior of strawberries, the correlation between chemical composition, in particular pelargonidin-3-glucoside (the major anthocyanin in strawberry), and fungal decay was studied. Results showed significant differences in (poly)phenolic content between the four investigated cultivars, in particular total phenolics and pelargonidin-3-glucoside. Moreover, the studied strawberries significantly varied (p < 0.05) in other evaluated parameters such as pH, sugars, and ascorbic acid. The Red Rhapsody cultivar with higher contents of total phenolics and pelargonidin-3-glucoside exhibited higher resistance to fungal growth, which was further confirmed by the results of principal component analysis. Findings from this study could benefit the food industry through lessening postharvest spoilage by breeding strawberries with higher polyphenolic content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. V.C. Chaves, E. Calvete, F.H. Reginatto, Sci. Hortic. 225, 293–298 (2017)

    Article  CAS  Google Scholar 

  2. P.C. Mandave, P.K. Pawar, P.K. Ranjekar, N. Mantri, A.A. Kuvalekar, Sci. Hortic. 172, 124–134 (2014)

    Article  CAS  Google Scholar 

  3. A. Nowicka, A.Z. Kucharska, A. Sokół-Łętowska, I. Fecka, Food Chem. 270, 32–46 (2019)

    Article  CAS  PubMed  Google Scholar 

  4. S.V. Joseph, I. Edirisinghe, B.M. Burton-Freeman, J. Agric. Food Chem. 62(18), 3886–3903 (2014)

    Article  CAS  PubMed  Google Scholar 

  5. F. Folmer, U. Basavaraju, M. Jaspars, G. Hold, E. El-Omar, M. Dicato, M. Diederich, Phytochem. Rev. 13(1), 295–322 (2014)

    Article  CAS  Google Scholar 

  6. M. da Silva Pinto, J.E. de Carvalho, F.M. Lajolo, M.I. Genovese, K. Shetty, J. Med. Food. 13(5), 1027–1035 (2010)

    Article  CAS  Google Scholar 

  7. B. Jensen, I.M. Knudsen, B. Andersen, K.F. Nielsen, U. Thrane, D.F. Jensen, J. Larsen, Int. J. Food Microbiol. 160(3), 313–322 (2013)

    Article  CAS  PubMed  Google Scholar 

  8. B. Törün, M.A. Yörükce, F. Yaman, H. Bıyık, Int. J. Second. Metab. 5(1), 20–26 (2018)

    Google Scholar 

  9. V. Tournas, E. Katsoudas, Int. J. Food Microbiol. 105(1), 11–17 (2005)

    Article  CAS  PubMed  Google Scholar 

  10. M. Weidenboerner, C. Wieczorek, B. Kunz, J. Food Prot. 58(6), 661–665 (1995)

    Article  Google Scholar 

  11. A. Snowdon, Postharvest, A Color Atlas of Diseases & Disorders of Fruits & Vegetables (CRC Press, Boca Raton, 1990).

    Google Scholar 

  12. M. Ahmadi-Afzadi, H. Nybom, A. Ekholm, I. Tahir, K. Rumpunen, Postharvest Biol. Technol. 110, 173–182 (2015)

    Article  CAS  Google Scholar 

  13. V. Lattanzio, V.M. Lattanzio, A. Cardinali, in Phytochemistry: Advances in Research, ed. By F. Imperato (Research Signpost, Kerala, 2006) pp. 23–67

  14. C.H. Fredericks, K.J. Fanning, M.J. Gidley, G. Netzel, D. Zabaras, M. Herrington, M. Netzel, J. Sci. Food Agric. 93(4), 846–852 (2013)

    Article  CAS  PubMed  Google Scholar 

  15. K.P. Singh, A. Singh, U.P. Singh, Int. J. Fruit Sci. 15(3), 267–280 (2015)

    Article  Google Scholar 

  16. R. Plumbley, N.T. Keen, J.J. Sims, Paper presented at the Proc. of Second World Avocado Congress (1992)

  17. D. Prusky, Annu. Rev. Phytopathol. 34(1), 413–434 (1996)

    Article  CAS  PubMed  Google Scholar 

  18. S. Khanizadeh, D. Rekika, B. Ehsani-Moghaddam, R. Tsao, R. Yang, M.T. Charles, J.A. Sullivan, L. Gauthier, A. Gosselin, A.M. Potel, G. Reynaud, É. Thomas, LWT-Food Sci. Technol. 42(4), 893–898 (2009)

    Article  CAS  Google Scholar 

  19. E. Aprea, S. Carlin, L. Giongo, M. Grisenti, F. Gasperi, J. Agric. Food Chem. 58(2), 1100–1105 (2009)

    Article  CAS  Google Scholar 

  20. W. Janisiewicz, D. Peterson, Plant Dis. 88(6), 662–664 (2004)

    Article  CAS  PubMed  Google Scholar 

  21. S. Kadam, P. Prabhasankar, Food Res. Int. 43(8), 1975–1980 (2010)

    Article  Google Scholar 

  22. F.M. Campos, S.M.R. Ribeiro, C.M. Della Lucia, H.M. Pinheiro-Sant’Ana, P.C. Stringheta, Quim. Nova 32(1), 87–91 (2009)

    Article  CAS  Google Scholar 

  23. V. Spínola, B. Mendes, J.S. Câmara, P.C. Castilho, Anal. Bioanal. Chem. 403(4), 1049–1058 (2012)

    Article  PubMed  CAS  Google Scholar 

  24. V.L. Singleton, J.A. Rossi, Am. J. Enol. Vitic. 16(3), 144–158 (1965)

    CAS  Google Scholar 

  25. W. Brand-Williams, M.-E. Cuvelier, C. Berset, LWT-Food Sci. Technol. 28(1), 25–30 (1995)

    Article  CAS  Google Scholar 

  26. S. Kidd, C.L. Halliday, H. Alexiou, D.H. Ellis, Descriptions of Medical Fungi, 3rd edn. (Newstyle Printing, Adelaide, 2016).

    Google Scholar 

  27. C.K. Campbell, E.M. Johnson, Identification of Pathogenic Fungi, 2nd edn. (John Wiley & Sons, 2013)

  28. J.I. Pitt, A.D. Hocking, Fungi and Food Spoilage, 3rd edn. (Springer, 2009)

  29. T.J. White, T. Bruns, S. Lee, J. Taylor, in PCR Protocols: a guide to methods and applications. ed. by M.A. Innis, D.H. Gelfand, J.J. Sninsky, T.J. White (Academic Press, London, 1990), pp. 315–322

    Google Scholar 

  30. J. de Jesús Ornelas-Paz, E.M. Yahia, N. Ramírez-Bustamante, J.D. Pérez-Martínez, M. del Pilar Escalante-Minakata, V. Ibarra-Junquera, C. Acosta-Muniz, V. Guerrero-Prieto, E. Ochoa-Reyes, Food Chem. 138(1), 372–381 (2013)

    Article  CAS  Google Scholar 

  31. D. Šamec, M. Maretić, I. Lugarić, A. Mešić, B. Salopek-Sondi, B. Duralija, Food Chem. 194, 828–834 (2016)

    Article  PubMed  CAS  Google Scholar 

  32. E. Krüger, M. Josuttis, R. Nestby, T.B. Toldam-Andersen, C. Carlen, B. Mezzetti, J. Berry Res. 2(3), 143–157 (2012)

    Article  Google Scholar 

  33. E. Kafkas, M. Koşar, S. Paydaş, S. Kafkas, K. Başer, Food Chem. 100(3), 1229–1236 (2007)

    Article  CAS  Google Scholar 

  34. I. Ménager, M. Jost, C. Aubert, J. Agric. Food Chem. 52(5), 1248–1254 (2004)

    Article  PubMed  CAS  Google Scholar 

  35. K. Sturm, D. Koron, F. Stampar, Food Chem. 83(3), 417–422 (2003)

    Article  CAS  Google Scholar 

  36. J.M. Alvarez-Suarez, L. Mazzoni, T.Y. Forbes-Hernandez, M. Gasparrini, S. Sabbadini, F. Giampieri, J. Berry Res. 4(1), 1–10 (2014)

    Article  CAS  Google Scholar 

  37. H. Kelebek, S. Selli, J. Liq. Chrom. Relat. Technol. 34(20), 2495–2504 (2011)

    Article  CAS  Google Scholar 

  38. A.E. Osbourn, Plant Cell 8(10), 1821 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. J. Pincemail, C. Kevers, J. Tabart, J.O. Defraigne, J. Dommes, J. Food Sci. 77(2), C205–C210 (2012)

    Article  CAS  PubMed  Google Scholar 

  40. L. Wang, G. Dou, H. Guo, Q. Zhang, X. Qin, W. Yu, C. Jiang, H. Xiao, Food Sci. Nutr. 7(8), 2625–2635 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. S. Tao, S. Zhang, R. Tsao, M.T. Charles, R. Yang, S. Khanizadeh, Arch. Phytopathol. Plant Protect. 43(16), 1564–1578 (2010)

    Article  CAS  Google Scholar 

  42. H.M. Schaefer, M. Rentzsch, M. Breuer, Nat. Prod. Commun. 3(8), 1934578X0800300808 (2008)

  43. J. Sun, W.J. Janisiewicz, B. Nichols, W.M. Jurick II., P. Chen, Postharvest Biol. Technol. 127, 68–75 (2017)

    Article  CAS  Google Scholar 

  44. S.S. Maharachchikumbura, K.D. Hyde, J.Z. Groenewald, J. Xu, P.W. Crous, Stud. Mycol. 79, 121–186 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. W. Van Hemelrijck, A. Ceustermans, J. Van Campenhout, P. Lieten, D. Bylemans, Paper Presented at the VIII International Strawberry Symposium 1156 (2016)

  46. S. Barad, S.B. Horowitz, O. Moscovitz, A. Lichter, A. Sherman, D. Prusky, Mol. Plant Microbe Interact. 25(6), 779–788 (2012)

    Article  CAS  PubMed  Google Scholar 

  47. D. Prusky, J.L. McEvoy, R. Saftner, W.S. Conway, R. Jones, Phytopathol. 94(1), 44–51 (2004)

    Article  Google Scholar 

  48. S. Jersch, C. Scherer, G. Huth, E. Schlösser, J. Plant Dis. Protect. 365–378 (1989)

Download references

Acknowledgements

The authors would like to thank Margaret Currie, Andrew Cusack, and Panhchapor Chhim for their technical assistance, and Australian Government for the Research Training Program Scholarship.

Funding

This work was supported by The University of Queensland, and Horticulture Innovation Australia Limited through the HN15001 Naturally Nutritious project.

Author information

Authors and Affiliations

Authors

Contributions

WCF designed the study and test data was collected by CF, ADTP, HTH, and MC, MSD drafted the manuscript. RM, MEN, and YS reviewed and improved the manuscript.

Corresponding author

Correspondence to Yasmina Sultanbawa.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damyeh, M.S., Fernando, C.W., Phan, A.D.T. et al. Post-harvest fungal occurrence on commercial strawberry cultivars grown in Australia: impact of phytochemical composition. Food Measure 15, 3811–3822 (2021). https://doi.org/10.1007/s11694-021-00924-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-00924-8

Keywords

Navigation