Skip to main content

Advertisement

Log in

Extraction of dietary fibers from bagasse and date seed, and evaluation of their technological properties and antioxidant and prebiotic activity

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Dietary fiber (DF) was extracted from plant byproducts (date seed and sugarcane bagasse) by alkaline hydrogen peroxide extraction and their chemical composition, technological properties, antioxidant activity, and prebiotic activity were evaluated. Bagasse had a significantly higher DF content (48.34%) than date seed (39.89%). Bagasse dietary fiber (BDF) had a significantly higher Fe, K, Mg, Na, and Zn (1343 ppm, 274.69 ppm, 640.08 ppm, 643.08 ppm, and 31.74 ppm, respectively) than date seed dietary fiber (DSDF) with 186.84 ppm, 185.88 ppm, 505.64 ppm, 506.72 ppm, and 13.28 ppm, respectively. The results showed that BDF had significantly higher values for oil binding capacity, water-holding capacity, and swelling capacity which equaled 2.73 g/g, 7.12 ml/g, and 12.50 ml/g, respectively, compared to DSDF (0.81 g/g, 4.06 ml/g, and 8.88 ml/g, respectively). The samples containing 5% DSDF and 5% BDF had the highest stimulating effect on Lactobacillus acidophilus growth, respectively. Also, pH reduction in the studied media depended on the type of DF and its concentration and the trend of decrease in pH was variable. Evaluation of the antioxidant activity of the studied DFs indicated that, at a 500 ppm concentration, DSDF with 89.12% had a significantly higher 1,1-diphenyl-2-picrylhydrazyl (DPPH) inhibition rate than ascorbic acid (85.4%), and with increasing the DF concentration, antioxidant activity increased. The findings confirmed that the studied DFs have prebiotic effects. Due to their technological, physicochemical, and antioxidant properties, they can be used as inexpensive DF sources in the food and pharmaceutical industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. H. Trowell, Atherosclerosis 16(1), 138–140 (1972)

    CAS  PubMed  Google Scholar 

  2. M. Elleuch, D. Bedigian, O. Roiseux, S. Besbes, C. Blecker, H. Attia, Food Chem. 124, 411–21 (2011)

    CAS  Google Scholar 

  3. J. Verspreet, B. Damen, W.F. Broekaert, K. Verbeke, J.A. Delcour, C.M. Courtin, Annu. Rev. Food Sci. Technol. 7, 167–90 (2016)

    CAS  PubMed  Google Scholar 

  4. F. Dai, C. Chau, J. Food Drug Anal. 25, 37–42 (2017)

    CAS  PubMed  Google Scholar 

  5. A. Shakurnia, A. Sheikhi, M. Mirzapour, V. Baharifar, N. Baharifar, N. Aghamohammadi, M. Sheikhi, M. Matinrad, S.N. Mousavinasab, S. Sheikhi, R. Sheikhi, Complement. Ther. Med. 47, 102210 (2019)

    PubMed  Google Scholar 

  6. A. Sheikhi, H. Giti, M.R. Heibor, A. Jafarzadeh, M. Shakierian, N. Baharifar, F. Niruzad, A. Sadeghi Moghadam, P. Kokhaei, M. Bagherifar, Drug Res. (Stuttg) 67(12), 724–729 (2017)

    CAS  Google Scholar 

  7. A. Sheikhi, M. Shakerian, H. Giti, M. Bagherifar, A. Jafarzadeh, V. Ghaed, M.R. Heibor, N. Baharifar, Z.G. DadafarinBashirpour, Drug Res. (Stuttg) 66(6), 300–305 (2016)

    CAS  Google Scholar 

  8. G. L. Spencer, J. CP. Chen, (No.664.1S651977)

  9. A. Sangnark, A. Noomhorm, LWT-Food Sci. Technol. 37, 697–704 (2004)

    CAS  Google Scholar 

  10. S. Al-Hooti, J.S. Sidhu, H. Qabazard, J. Food Sci. Technol. 35(1), 44–46 (1998)

    CAS  Google Scholar 

  11. K. Karthishwaran, A. Senthilkumar, W. A. Alzayadneh, M. A. M. Alyafei, Emirates J. Food Agric.,73–81(2020)

  12. M. Al-Farsi, C. Lee, Crit. Rev. Food Sci. Nutr. 48, 877–87 (2008)

    CAS  PubMed  Google Scholar 

  13. H.M. Habib, W.H. Ibrahim, Int. J. Food Sci. Nutr. 60, 99–111 (2009)

    CAS  PubMed  Google Scholar 

  14. Chu, Jiaxi, H. Zhao, Zh. Lu, F. Lu, X. Bie, C. Zhang, Food Chem. 294, 79–86 (2019)

    CAS  PubMed  Google Scholar 

  15. E. Inglett, George, Dietary fiber gels for calorie reduced foods and method for preparing the same,1998, In.: Google Patents

  16. AACC, 10th ed, (AACC, St. Paul, MN, 2000)

  17. S.R. Krishnamurthy, P. Sarala, IJNPR 3(1), 20–27 (2012)

    CAS  Google Scholar 

  18. R. Sorourian, A.E. Khajehrahimi, M. Tadayoni, M.H. Azizi, M. Hojjati, Int. J. Biol. Macromol. 160, 758–768 (2020)

    CAS  PubMed  Google Scholar 

  19. A. Azizah, Y. Luan, Food Chem. 68, 15–19 (2000)

    Google Scholar 

  20. A. Sangnark, A. Noomhorm, Food Chem. 80, 221–29 (2003)

    CAS  Google Scholar 

  21. J.A. Robertson, F.D. de Monredon, P. Dysseler, F. Guillon, R. Amado, J.F. Thibault, LWT - Food Sci Technol. 33, 72–79 (2000)

    CAS  Google Scholar 

  22. T. Prakongpan, A. Nitithamyong, J. Food Sci. 67, 1308–13 (2002)

    Google Scholar 

  23. H. Hu, Q. Zhao, RSC Adv. 8(72), 41117–41130 (2018)

    CAS  Google Scholar 

  24. K. Goderska, J. Nowak, Z. Czarnecki, Acta Sci. Pol. Tech. Aliment. 7, 5–20 (2008)

    CAS  Google Scholar 

  25. Parkar, G. Shanthi, L. Simmons, T.D. Herath, J.E. Phipps, T.M. Trower, D.I. Hedderley, T.K. McGhie, P. Blatchford, J. Ansell, K.H. Sutton, J.R. Ingram, Int. J. Food Sci. Technol. 53, 1203–10 (2018)

    Google Scholar 

  26. Z. Xue, Y. Chen, Y. Jia, Y. Wang, Y. Lu, H. Chen, M. Zhang, Struct. Food Hydrocoll. 95, 10–18 (2019)

    CAS  Google Scholar 

  27. D.I.L. Gil-López, J.A. Lois-Correa, M.E. Sánchez-Pardo, M.A. Domínguez-Crespo, A.M. Torres-Huerta, A.E. Rodríguez-Salazar, V.N. Orta-Guzmán, Ind. Crops Prod. 135, 159–169 (2019)

    Google Scholar 

  28. R.W.W. Chong, M. Ball, C. McRae, N.H. Packer, Food Chem. 298, 125032 (2019)

    CAS  PubMed  Google Scholar 

  29. A. Ahmad, H. Imtiaz, in Sustainable Agriculture Reviews 34. ed. by M. Naushad, E. Lichtfouse (Springer, Cham, 2019), pp. 55–77

    Google Scholar 

  30. W. Dong, D. Wang, R. Hu, Y. Long, L. Lv, Food Res. Int. 136, 109497 (2020)

    CAS  PubMed  Google Scholar 

  31. M. Orqueda, I.C. Zampini, S. Torres, M.R. Alberto, L.L. PinoRamos, G. Schmeda-Hirschmann, M.I. Isla, J. Funct. Foods 37, 531–40 (2017)

    CAS  Google Scholar 

  32. M. Hua, J. Lu, D. Qu, C. Liu, L. Zhang, S. Li, J. Chen, Y. Sun, Food Chem. 286, 522–29 (2019)

    CAS  PubMed  Google Scholar 

  33. H. Habib, A. Othman, S. Al-Marzooqi, A. Al-Bawardi, J.Y. Pathan, S. Hilary, F. Al-meqbaali, U. Souka, S. Al-Hammadi, W. Ibrahim, C. Platat, Emir. J. Food Agric. 29, 822–832 (2017)

    Google Scholar 

  34. Y.N. Mora, J.C. Contreras, C.N. Aguilar, P. Meléndez, I. De la Garza, R. Rodríguez, Am. J. Food Nutr 1, 27–33 (2013)

    CAS  Google Scholar 

  35. V.O. Alfredo, R.R. Gabriel, C.G. Luis, B.A. David, LWT-Food Sci. Technol. 42, 168–73 (2009)

    Google Scholar 

  36. N. Chiewchan, Food Microstructure and Its Relationship with Quality and Stability (Woodhead Publishing, Sawston, 2018), pp. 193–216

    Google Scholar 

  37. Y. Zhang, J. Qi, W. Zeng, Y. Huang, X. Yang, Food Chem. (2019). https://doi.org/10.1016/j.foodchem.2019.125873

    Article  PubMed  Google Scholar 

  38. Y.H. Kuan, M.T. Liong, J. Agric. Food Chem. 56, 9252–57 (2008)

    Google Scholar 

  39. V. Benítez, E. Mollá, M. Martín-Cabrejas, Y. Aguilera, F. López-Andréu, R. Esteban, Eur. Food Res. Technol. 234, 617–25 (2012)

    Google Scholar 

  40. Z. Zhuang, M. Chen, J. Niu, N. Qu, B. Ji, X. Duan, Z. Liu, X. Liu, Y. Wang, B. Zhao, Molecules 24, 3813 (2019)

    PubMed Central  Google Scholar 

  41. B. Bchir, H. Rabetafika, M. Paquot, C. Blecker, Food Bioprocess Technol. 7, 1114–27 (2014)

    Google Scholar 

  42. J. Nsor-Atindana, F. Zhong, K.J. Mothibe, Food Funct. 3(10), 1044–1050 (2012)

    CAS  PubMed  Google Scholar 

  43. X. Meng, F. Liu, Y. Xiao, J. Cao, M. Wang, X. Duan, Food Chem. X 3, 100029 (2019)

    PubMed  PubMed Central  Google Scholar 

  44. Y. Song, W. Su, Y.C. Mu, Int J. Food Prop. 21(1), 1219–1232 (2018)

    CAS  Google Scholar 

  45. Y. Zhu, J. Chu, Z. Lu, F. Lv, X. Bie, C. Zhang, H. Zhao, J. Cereal Sci. 79, 456–461 (2018)

    CAS  Google Scholar 

  46. W. Wu, J. Hu, H. Gao, H. Chen, X. Fang, H. Mu, Y. Han, R. Liu, Food Chem. (2020). https://doi.org/10.1016/j.foodchem.2020.127372

    Article  PubMed  PubMed Central  Google Scholar 

  47. D. Su, X. Zhu, Y. Wang, D. Li, L. Wang, LWT 116, 108573 (2019)

    CAS  Google Scholar 

  48. J. Bian, F. Peng, X.P. Peng, P. Peng, F. Xu, R.C. Sun, Bioresour. Technol. 127, 236–41 (2015)

    Google Scholar 

  49. M. Tadayoni, M. Sheikh-Zeinoddin, S. Soleimanian-Zad, Int. J. Biol. Macromol. 72, 179–184 (2015)

    CAS  PubMed  Google Scholar 

  50. M. Reyes-Reyes, J.A. Salazar‐Montoya, L.I. Rodríguez‐Páez, E.G. Ramos‐Ramírez, J. Sci. Food Agric. 99, 2883–91 (2019)

    Google Scholar 

  51. Y.Y. Ho, C.M. Lin, M.C. Wu, J. Food Drug Anal. 25, 550–58 (2017)

    CAS  PubMed  Google Scholar 

  52. M.Y. Zhang, A.M. Liao, K. Thakur, J.H. Huang, J.G. Zhang, Z.J. Wei, Food Chem. 297, 124983 (2019)

    CAS  PubMed  Google Scholar 

  53. J. Gan, Z. Huang, Q. Yu, G. Peng, Y. Chen, J. Xie, S. Nie, M. Xie, Food Hydrocoll. 101, 105549 (2020)

    CAS  Google Scholar 

  54. M. Gua, H. Fang, Y. Gao, T. Su, Y. Niu, L.L. Yu, Food Hydrocoll. 99, 105321 (2020)

    Google Scholar 

  55. Y. Zhu, C. He, H. Fan, Z. Lu, F. Lu, H. Zhao, LWT 101, 463–68 (2019)

    CAS  Google Scholar 

  56. H.O. Wang, S.H. Liu, X.J. Zhou, X.Y. Yang, Q. Gao, M. Tanokura, Y.L. Xue, Int. J. Food Sci. Technol. 55(3), 1289–1297 (2019)

    Google Scholar 

  57. H. Chen, J. Li, R. Yao, S. Yan, Q. Wang, Food Chem. 305, 125435 (2020)

    CAS  PubMed  Google Scholar 

  58. B. Chen, Y. Cai, T. Liu, L. Huang, X. Zhao, M. Zhao, X. Deng, Q. Zhao, Food Hydrocoll. 101, 105526 (2020)

    CAS  Google Scholar 

  59. S. Liu, M. Jia, J. Chen, H. Wan, R. Dong, S. Nie, M. Xie, Q. Yu, Food Hydrocoll. 93, 284–292 (2019)

    CAS  Google Scholar 

  60. A. Bermúdez-Oria, G. Rodríguez-Gutiérrez, Á. Fernández-Prior, H. Knicker, J. Fernández-Bolaños, Food Hydrocoll. 102, 105584 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrnoosh Tadayoni.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afrazeh, M., Tadayoni, M., Abbasi, H. et al. Extraction of dietary fibers from bagasse and date seed, and evaluation of their technological properties and antioxidant and prebiotic activity. Food Measure 15, 1949–1959 (2021). https://doi.org/10.1007/s11694-020-00774-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00774-w

Keywords

Navigation