Skip to main content
Log in

Biopreservative potential of Lactobacillus strains in yoghurt dessert

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The effects of Lactobacillus fermentum, L. helveticus, L. reuteri and L. rhamnosus on radical scavenging activity (DPPH and ABTS), lactate concentration and antibacterial potential (against E. coli, P. aeruginosa, S. sonnei, S. aureus and B. cereus) of yoghurt dessert were investigated during fermentation (37 °C for 24 h). The amount of protein carbonyls and the peroxide and anisidine values were also examined during cold storage period (5 °C for 10 days) in order to evaluate the oxidative stability of produced samples. During the fermentation period, L. helveticus had the greatest effect on increasing the antioxidant activity (DPPH and ABTS) of samples, while the highest lactic acid concentration (22.1 g/kg) and strains viability (9.5 log CFU/g) were related to the samples fermented by L. fermentum. Lactobacillus fermentum was the most effective antipathogen strain, while the lowest antibacterial activity observed for L. rhamnosus strain. Moreover, P. aeruginosa and S. sonnei exhibited the highest and B. cereus the lowest resistance to Lactobacillus strains, respectively. During the cold storage, the viability of LAB showed an increasing trend until the fourth day and then gradually decreased by 7–11%. The oxidative stability of all fermented samples was significantly (p ≤ 0.05) higher than that of control during the cold storage. The yoghurt dessert fermented by L. helveticus exhibited the lowest peroxide and anisidine values and the protein carbonyls concentration during the cold storage which it can be attributed to the higher antioxidant activity of this strain compared to others. It can be concluded that the Lactobacillus strains have the potential to be used as an effective biopreservation tool in yoghurt dessert production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. N. Turkmen, C. Akal, B. Özer, Probiotic dairy-based beverages: a review. J. Funct. Foods 53, 62–75 (2019)

    Article  CAS  Google Scholar 

  2. M.K. Pettersen, T. Eie, A. Nilsson, Oxidative stability of cream cheese stored in thermoformed trays as affected by packaging material, drawing depth and light. Int. Dairy J. 15(4), 355–362 (2005)

    Article  CAS  Google Scholar 

  3. N. Martin, S. Murphy, R. Ralyea, M. Wiedmann, K. Boor, When cheese gets the blues: Pseudomonas fluorescens as the causative agent of cheese spoilage. J. Dairy Sci. 94(6), 3176–3183 (2011)

    Article  CAS  Google Scholar 

  4. A.H. Rad, M. Javadi, H.S. Kafil, H.R. Pirouzian, M. Khaleghi, The safety perspective of probiotic and non-probiotic yoghurts: a review. Food Qual. Saf. 3(1), 9–14 (2019)

    Article  CAS  Google Scholar 

  5. K.H. Teh, S. Flint, J. Palmer, D. Lindsay, P. Andrewes, P. Bremer, Thermo-resistant enzyme-producing bacteria isolated from the internal surfaces of raw milk tankers. Int. Dairy J. 21(10), 742–747 (2011)

    Article  CAS  Google Scholar 

  6. M.C. García-Martínez, J. Fontecha, J. Velasco, F. Holgado, G. Márquez-Ruiz, Occurrence of lipid oxidation compounds in commercialised functional dairy products. Int. Dairy J. 86, 27–35 (2018)

    Article  Google Scholar 

  7. D. Scheidegger, R. Pecora, P. Radici, S. Kivatinitz, Protein oxidative changes in whole and skim milk after ultraviolet or fluorescent light exposure. J. Dairy Sci. 93(11), 5101–5109 (2010)

    Article  CAS  Google Scholar 

  8. M. Parish, L. Beuchat, T. Suslow, L. Harris, E. Garrett, J. Farber, F. Busta, Methods to reduce/eliminate pathogens from fresh and fresh-cut produce. Compr. Rev. Food Sci. Food Saf. 2, 161–173 (2003)

    Article  Google Scholar 

  9. S. Tavman, S. Otles, S. Glaue, N. Gogus, Food preservation technologies, in Saving Food: Production, Supply Chain, Food Waste, and Food Consumption. ed. by C.M. Galanakis (Academic Press, Chennai, 2019), pp. 117–140

    Chapter  Google Scholar 

  10. F.D. Gonelimali, J. Lin, W. Miao, J. Xuan, F. Charles, M. Chen, S.R. Hatab, Antimicrobial properties and mechanism of action of some plant extracts against food pathogens and spoilage microorganisms. Front. Microbiol. 9, 1639 (2018)

    Article  Google Scholar 

  11. Z. Gao, E.B.M. Daliri, J. Wang, D. Liu, S. Chen, X. Ye, T. Ding, Inhibitory effect of lactic acid bacteria on foodborne pathogens: a review. J. Food Prot. 82(3), 441–453 (2019)

    Article  CAS  Google Scholar 

  12. A. Citta, A. Folda, V. Scalcon, G. Scutari, A. Bindoli, M. Bellamio, E. Feller, M.P. Rigobello, Oxidative changes in lipids, proteins, and antioxidants in yogurt during the shelf life. Food Sci. Nutr. 5(6), 1079–1087 (2017)

    Article  CAS  Google Scholar 

  13. S.M.B. Hashemi, R. Amininezhad, E. Shirzadinezhad, M. Farahani, S.H.A. Yousefabad, the antimicrobial and antioxidant effects of Citrus aurantium L. flowers (Bahar Narang) extract in traditional yoghurt stew during refrigerated storage. J. Food Saf. 36(2), 153–161 (2016)

    Article  CAS  Google Scholar 

  14. T.H. Kao, B.H. Chen, Functional components in soybean cake and their effects on antioxidant activity. J. Agric. Food Chem. 54(20), 7544–7555 (2006)

    Article  CAS  Google Scholar 

  15. S.M.B. Hashemi, A.M. Khaneghah, F.J. Barba, Z. Nemati, S.S. Shokofti, F. Alizadeh, Fermented sweet lemon juice (Citrus limetta) using Lactobacillus plantarum LS5: Chemical composition, antioxidant and antibacterial activities. J. Funct. Foods 38, 409–414 (2017)

    Article  CAS  Google Scholar 

  16. Y.H. Pyo, T.C. Lee, Y.C. Lee, Effect of lactic acid fermentation on enrichment of antioxidant properties and bioactive isoflavones in soybean. J. Food Sci. 70(3), S215–S220 (2005)

    Article  CAS  Google Scholar 

  17. T. Virtanen, A. Pihlanto, S. Akkanen, H. Korhonen, Development of antioxidant activity in milk whey during fermentation with lactic acid bacteria. J. Appl. Microbiol. 102(1), 106–115 (2007)

    Article  CAS  Google Scholar 

  18. E.G. Bligh, W.J. Dyer, A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37(8), 911–917 (1959)

    Article  CAS  Google Scholar 

  19. N.C. Shantha, E.A. Decker, Rapid, sensitive, iron-based spectrophotometric methods for determination of perorlride values of food lipids. J. AOAC Int. 77(2), 421–424 (1994)

    Article  CAS  Google Scholar 

  20. R.L. Levine, J.A. Williams, E.P. Stadtman, E. Shacter, Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol. 233, 346–357 (1994)

    Article  CAS  Google Scholar 

  21. J. Xing, G. Wang, Q. Zhang, X. Liu, Z. Gu, H. Zhang, Y.Q. Chen, W. Chen, Determining antioxidant activities of lactobacilli cell-free supernatants by cellular antioxidant assay: a comparison with traditional methods. PLoS ONE 10(3), e0119058 (2015)

    Article  Google Scholar 

  22. J. Saide, S. Gilliland, Antioxidative activity of lactobacilli measured by oxygen radical absorbance capacity. J. Dairy Sci. 88(4), 1352–1357 (2005)

    Article  CAS  Google Scholar 

  23. S.H. Hamad, Factors affecting the growth of microorganisms in food, in Progress in food preservation. ed. by R. Bhat, A.K. Alias, G. Paliyath (Wiley, Noida, 2012), pp. 405–427

    Chapter  Google Scholar 

  24. D. Hemme, C. Foucaud-Scheunemann, Leuconostoc, characteristics, use in dairy technology and prospects in functional foods. Int. Dairy J. 14(6), 467–494 (2004)

    Article  Google Scholar 

  25. T.M.P. Nguyen, Y.K. Lee, W. Zhou, Effect of high intensity ultrasound on carbohydrate metabolism of bifidobacteria in milk fermentation. Food Chem. 130(4), 866–874 (2012)

    Article  CAS  Google Scholar 

  26. A. Gholamhosseinpour, S.M.B. Hashemi, Ultrasound pretreatment of fermented milk containing probiotic Lactobacillus plantarum AF1: carbohydrate metabolism and antioxidant activity. J. Food Process. Eng. 42(1), e12930 (2019)

    Article  Google Scholar 

  27. G. Balakrishnan, R. Agrawal, Antioxidant activity and fatty acid profile of fermented milk prepared by Pediococcus pentosaceus. J. Food Sci. Technol. 51(12), 4138–4142 (2014)

    Article  CAS  Google Scholar 

  28. X. Lin, Y. Xia, G. Wang, Y. Yang, Z. Xiong, F. Lv, W. Zhou, L. Ai, Lactic acid bacteria with antioxidant activities alleviating oxidized oil induced hepatic injury in mice. Front. Microbiol. 9, 2684 (2018)

    Article  Google Scholar 

  29. A. Amaretti, M. Di Nunzio, A. Pompei, S. Raimondi, M. Rossi, A. Bordoni, Antioxidant properties of potentially probiotic bacteria: in vitro and in vivo activities. Appl. Microbiol. Biotechnol. 97(2), 809–817 (2013)

    Article  CAS  Google Scholar 

  30. D. Ren, J. Zhu, S. Gong, H. Yu, Antimicrobial characteristics of lactic acid bacteria isolated from homemade fermented foods. BioMed Res. Int. (2018). https://doi.org/10.1155/2018/5416725

    Article  PubMed  PubMed Central  Google Scholar 

  31. D. Cizeikiene, G. Juodeikiene, A. Paskevicius, E. Bartkiene, Antimicrobial activity of lactic acid bacteria against pathogenic and spoilage microorganism isolated from food and their control in wheat bread. Food Control 31(2), 539–545 (2013)

    Article  CAS  Google Scholar 

  32. S. Gaamouche, A. Arakrak, M. Bakkali, A. Laglaoui, Antimicrobial activity of lactic acid bacteria and bacteriocins isolated from a traditional brine table olives against pathogenic bacteria. Int. J. Curr. Microbiol. Appl. Sci. 3(11), 657–666 (2014)

    Google Scholar 

  33. N.P. Shah, W.E. Lankaputhra, M.L. Britz, W.S. Kyle, Survival of Lactobacillus acidophilus and Bifidobacterium bifidum in commercial yoghurt during refrigerated storage. Int. Dairy J. 5(5), 515–521 (1995)

    Article  Google Scholar 

  34. M.R. Damin, E. Minowa, M.R. Alcantara, M.N. Oliveira, Effect of cold storage on culture viability and some rheological properties of fermented milk prepared with yogurt and probiotic bacteria. J. Texture Stud. 39(1), 40–55 (2008)

    Article  Google Scholar 

  35. S. Settachaimongkon, H.J. van Valenberg, I. Gazi, M.R. Nout, T.C. van Hooijdonk, M.H. Zwietering, E.J. Smid, Influence of Lactobacillus plantarum WCFS1 on post-acidification, metabolite formation and survival of starter bacteria in set-yoghurt. Food Microbiol. 59, 14–22 (2016)

    Article  CAS  Google Scholar 

  36. L. Liu, C. Li, J. Liu, Rheological and physical characteristics of non-fat set yogurt prepared with EPS-producing Streptococcus thermophilus and an H+-ATPase-defective mutant Lactobacillus delbrueckii subsp bulgaricus. Int. J. Food Prop. 20(4), 745–753 (2017)

    Article  CAS  Google Scholar 

  37. A.B. Shori, Antioxidant activity and viability of lactic acid bacteria in soybean-yogurt made from cow and camel milk. J. Taibah Univ. Sci. 7(4), 202–208 (2013)

    Article  Google Scholar 

  38. M. Serra, A. Trujillo, J. Pereda, B. Guamis, V. Ferragut, Quantification of lipolysis and lipid oxidation during cold storage of yogurts produced from milk treated by ultra-high pressure homogenization. J. Food Eng. 89(1), 99–104 (2008)

    Article  CAS  Google Scholar 

  39. H. Cheng, Volatile flavor compounds in yogurt: a review. Crit. Rev. Food Sci. Nutr. 50(10), 938–950 (2010)

    Article  CAS  Google Scholar 

  40. S.J. Hur, S.Y. Lee, Y.C. Kim, I. Choi, G.B. Kim, Effect of fermentation on the antioxidant activity in plant-based foods. Food Chem. 160, 346–356 (2014)

    Article  CAS  Google Scholar 

  41. Q. Ge, S. Chen, R. Liu, L. Chen, B. Yang, H. Yu, M. Wu, W. Zhang, G. Zhou, Effects of Lactobacillus plantarum NJAU-01 on the protein oxidation of fermented sausage. Food Chem. 295, 361–367 (2019)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seyed Mohammad Bagher Hashemi or Aliakbar Gholamhosseinpour.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashemi, S.M.B., Gholamhosseinpour, A. & Abedi, E. Biopreservative potential of Lactobacillus strains in yoghurt dessert. Food Measure 15, 1634–1643 (2021). https://doi.org/10.1007/s11694-020-00755-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00755-z

Keywords

Navigation