Skip to main content
Log in

Impact of particle size fractions on composition, antioxidant activities, and functional properties of soybean hulls

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

This research investigated potential soybean hull utilization in high value products by determining the amount of proteins, dietary fiber, minerals, phenolics, antioxidant activities, as well as functional properties of soybean hull samples in five different size fractions from 20 to 140 mesh. The contents of protein, ash, soluble sugar, and most amino acids increased with decreasing sizes. This study first reported the quantities of bound phenolic contents and antioxidant activities, soluble sugars, and amino acids in soybean hulls. The statistically significant increases were found with decreasing particle sizes in the free phenolic contents (1.81 to 3.24 mg/g) and antioxidant activities (1.51 to 1.95 µmol/g). In general, free phenolic contents were slightly higher compared to bound phenolic contents, whereas the free antioxidant activities were considerably lower than bound antioxidant activities for the same fraction, which suggested that a portion of antioxidant activities were not released during neutral extraction. The extracted protein from soybean hulls showed similar banding patterns with soybean products as demonstrated by gel electrophoresis. The content of water-soluble solids increased significantly with decreasing size (15.08 to 23.71%). By contrast, water-holding capacities decreased significantly with decreasing particle sizes (666.72 to 337.47%). The final viscosity peak of soybean hulls increased as the sizes increased. The trend of final peaks from blends appeared to be related to their water-holding capacities. In addition, the correlation tests disclosed statistically significant relationships (p < 0.05) between selective properties of soybean hulls. Our results suggested that soybean hulls are a valuable source for functional foods and industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Extension, What are soybean-hulls (2019), https://articles.extension.org/pages/39695/what-are-soybean-hulls. 28 March 2019

  2. H.H. Stein, L.L Berger, J.K. Drackley, G.C. Fahey Jr., D.C. Hernot, C.M. Parsons, Nutritional properties and feeding values of soybeans and their coproducts, in Soybeans: Chemistry, Production, Processing, and Utilization (2008), pp. 613–660

  3. S.J. Anderson, J.K. Merrill, M.L. McDonnell, T.J. Klopfenstein, J. Anim. Sci. 66, 2965–2976 (1988). https://doi.org/10.2527/jas1988.66112965x

    Article  Google Scholar 

  4. S.X. Liu, D. Chen, M. Singh, J. Xu, J. Food Res. 8(6), 66 (2019)

    Article  CAS  Google Scholar 

  5. M. Bunzel, J. Ralph, J.M. Marita, R.D. Hatfield, H. Steinhart, J. Sci. Food Agric. 81, 653–660 (2001). https://doi.org/10.1002/jsfa.861

    Article  CAS  Google Scholar 

  6. B. Verma, P. Hucl, R.N. Chibbar, Food Chem. 116, 947–954 (2009)

    Article  CAS  Google Scholar 

  7. D.G. Stevenson, F.J. Eller, J. Jane, G.E. Inglett, Int. J. Food Sci. Technol. 43, 995–1003 (2008). https://doi.org/10.1111/j.1365-2621.2007.01547.x

    Article  CAS  Google Scholar 

  8. G.E. Inglett, D. Chen, Cereal Chem. 88, 36–40 (2011). https://doi.org/10.1094/CCHEM-07-10-0104(2011)

    Article  CAS  Google Scholar 

  9. J.B. Zhao, G. Zhang, W.X. Dong, Y. Zhang, J.J. Wang, L. Liu, S. Zhang, Anim. Feed Sci. Technol. 258, art. no. 114310 (2019) https://doi.org/10.1016/j.anifeedsci.2019.114310

  10. G. Xiang, Y. Zhang, X. Jiang, L. He, L. Fan, W. Zhao, J. Hazard. Mater. 179, 521–525 (2010). https://doi.org/10.1016/j.jhazmat.2010.03.034

    Article  CAS  PubMed  Google Scholar 

  11. G. Niño-Medina, D. Muy-Rangel, V. Urías-Orona, Waste Biomass 8, 1199–1203 (2017). https://doi.org/10.1007/s12649-016-9700-4

    Article  CAS  Google Scholar 

  12. American Association of Cereal Chemists, Crude protein – Combustion method, in American Association of Cereal Chemists Official Methods, 9th edition (St. Paul, MN: The Association, 1995) Method 46-30.01

  13. A. Serpen, V. Gökmen, N. Pellegrini, V. Fogliano, J. Cereal Sci. 48, 816–820 (2008). https://doi.org/10.1016/j.jcs.2008.06.002

    Article  CAS  Google Scholar 

  14. A.L. Waterhouse, Determination of total phenolics, in Current Protocols in Food Analytical Chemistry. ed. by R.E. Wrolstad (Wiley, New York, 2001), p. I1.1.1-I1.1.8

    Google Scholar 

  15. L. Yu, K. Zhou, Food Chem. 90, 311–316 (2004). https://doi.org/10.1016/j.foodchem.2004.04.007

    Article  CAS  Google Scholar 

  16. I. Şensoy, R.T. Rosén, C.-T. Ho, M.V. Karwe, Food Chem. 99, 388–393 (2006). https://doi.org/10.1016/j.foodchem.2005.08.007

    Article  CAS  Google Scholar 

  17. E. Giannoccaro, Y.-J. Wang, P. Chen, J. Food Sci. 71, C59–C64 (2006)

    Article  CAS  Google Scholar 

  18. E. Giannoccaro, Y.-J. Wang, P. Chen, Food Chem. 106, 324–330 (2008)

    Article  CAS  Google Scholar 

  19. A. Hou, P. Chen, A. Shi, B. Zhang, Y.-J. Wang, Int. J. Agron. 1–8 (2009)

  20. AOAC Official Methods of Analysis, 17th Edition, #994.12, Modified (2002)

  21. H.D. Spitz, Anal. Biochem. 56, 66–73 (1973)

    Article  CAS  Google Scholar 

  22. S.A. Cohen, D.P. Michaud, Anal. Biochem. 211, 279–287 (1993)

    Article  CAS  Google Scholar 

  23. S.A. Cohen, K. De. Antonis, D.P. Michaud, Compositional protein analysis using 6 aminoquinolyl-N-hydroxy succinimidyl carbamate, a novel derivatizing agent, in Techniques in Protein Chemistry IV ed. by R.H Angeletit (Academic Press, San Diego, CA, 1993), pp. 289–298

  24. G.W. Selling, M.P. Hojilla-Evangelista, R.L. Evangelista, T. Isbell, N. Price, K.M. Doll, Crops Prod. 41, 113–119 (2013)

    Article  CAS  Google Scholar 

  25. U.K. Laemmli, Nature 227, 680–685 (1970)

    Article  CAS  Google Scholar 

  26. B.I.O. Ade-Omowaye, K.A. Taiwo, N.M. Eshtiaghi, Innov. Food Sci. Emerg. Technol. 4, 177–188 (2003). https://doi.org/10.1016/S1466-8564(03)00020-1

    Article  CAS  Google Scholar 

  27. M. Kaur, N. Singh, Int. J. Food Prop. 9, 597–608 (2006). https://doi.org/10.1080/10942910600853774

    Article  CAS  Google Scholar 

  28. G.E. Inglett, D. Chen, S.X. Liu, Int. J. Food Sci. Technol. 50, 878–884 (2014). https://doi.org/10.1111/ijfs.12722

    Article  CAS  Google Scholar 

  29. B.J. Hausch, J.A. Little, J.A. Kenar, K.R. Cadwallader, J. Agric. Food Chem. 66(44), 11718–11728 (2018)

    Article  CAS  Google Scholar 

  30. K. Liu, Effects of particle size distribution. Bioresource Technol. 100, 4433–4440 (2009)

    Article  CAS  Google Scholar 

  31. F. Saura-Calixto, J. Agric. Food Chem. 46, 4303–4306 (1998)

    Article  CAS  Google Scholar 

  32. N. Pellegrini, B. Colombi, S. Salvatore, O.V. Brenna, G. Galaverna, D. Del Rio, M. Bianchi, R.N. Bennett, F. Brighenti, J. Sci. Food Agric. 87, 103–111 (2007). https://doi.org/10.1002/jsfa.2682

    Article  CAS  Google Scholar 

  33. A. Renger, H. Steinhart, Eur. Food Res. Technol. 211, 422–428 (2000)

    Article  CAS  Google Scholar 

  34. P. Jankovska, J. Copikova, A. Sinitsya, M. Novotna, Czech J. Food Sci. 18, 182–183 (2000)

    CAS  Google Scholar 

  35. J. Perez-Jimenez, F. Saura-Calixto, J. Agric. Food Chem. 53, 5036–5040 (2005)

    Article  CAS  Google Scholar 

  36. H.E. Miller, F. Rigelhof, L. Marquart, A. Prakash, M. Kanter, Cereal Foods World 45, 59–63 (2000)

    Google Scholar 

  37. R.H. Liu, J. Cereal Sci. 46, 207–219 (2007)

    Article  CAS  Google Scholar 

  38. K.K. Adom, R.H. Liu, J. Agric. Food Chem. 50, 6182–6187 (2002)

    Article  CAS  Google Scholar 

  39. M. Serafini, R. Bellocco, A. Wolk, A.M. Ekstrom, Gastroenterology 123, 985–991 (2002)

    Article  CAS  Google Scholar 

  40. L. Frusciante, P. Carli, M.R. Ercolano, R. Pernice, A. Di Matteo, V. Fogliano, N. Pellegrini, Mol. Nutr. Food Res. 51, 609–617 (2007)

    Article  CAS  Google Scholar 

  41. R. Gnanasambandam, A. Proctor, Food Chem. 65, 461–467 (1999)

    Article  CAS  Google Scholar 

  42. L.K. Karr-Lilienthat, C.T. Kazerne, C.M. Grieshop, G.C. Fahey, Lives. Prod. Sci. 97, 1–12 (2005)

    Article  Google Scholar 

  43. A.L. Morgan, The importance of glucose (2019), https://www.livestrong.com/article/133891-the-importance-glucose/ Accessed 10 Oct 2020

  44. Biological magnetic resonance data bank. Member of Worldwide Protein Data Bank (2020), https://www.bio-rad.com/webroot/web/images/tlp/protein-ladder-recombinant-protein-ladders.png. Assessed on 12 March 2020

  45. Wikipedia , Lysozym (2020), https://en.wikipedia.org/wiki/Lysozyme_2020. Assessed on 12 March 2020

  46. Wikipedia, Aprotinin (2020), https://en.wikipedia.org/wiki/Aprotinin2020. Assessed on 12 March 2020

  47. S. Qiu, M.P. Yadav, L. Yin, Food Chem. 230, 225–233 (2017)

    Article  CAS  Google Scholar 

  48. R.B. Hammond, K. Pencheva, K.J. Roberts, T. Auffret, J. Pharm. Sci. 96(8), 1967–1973 (2007). https://doi.org/10.1002/jps.20869

    Article  CAS  PubMed  Google Scholar 

  49. C.D. Lam, R.A. Flores, Cereal Chem. (2003). https://doi.org/10.1094/CCHEM.2003.80.1.20

    Article  Google Scholar 

  50. S. Lee, G.E. Inglett, Rheological and physical evaluation of jet-cooked oat bran in low calorie cookies. Int. J. Food Sci. Technol. 41, 553–559 (2006). https://doi.org/10.1111/j.1365-2621.2005.01105.x

    Article  CAS  Google Scholar 

  51. N.G. Gravier, N.E. Zaritzky, A.N. Califano, J. Food Sci. 69(3), 123–128 (2004). https://doi.org/10.1111/j.1365-2621.2004.tb13364.x

    Article  Google Scholar 

  52. I. Mandala, T. Savvas, A. Kostaropoulos, J. Food Eng. 64(3), 335–342 (2004)

    Article  Google Scholar 

  53. B. Min, S.M. Lee, S.-H. Yoo, G.E. Inglett, S. Lee, J. Sc, Food Agric. 90(13), 2208–2213 (2010). https://doi.org/10.1002/jsfa.4072

    Article  CAS  Google Scholar 

  54. N. Kitabatake, M. Tahara, E. Doi, Agric. Biol. Chem. 54, 2205–2212 (1990)

    CAS  Google Scholar 

  55. NETZSCH. Curing (cross linking reaction) (2019), https://www.netzsch-thermal-analysis.com/tr/enduestriler-branslar/glossary/curing-crosslinking-reactions/. Accessed on 19 Dec 2019

  56. T. Hymowitz, F.I. Collins, J. Panczner, Agron. J. 64, 613–616 (1972). https://doi.org/10.2134/agronj1972.00021962006400050019x

    Article  CAS  Google Scholar 

  57. G. Jiang, P. Chen, J. Zhang, L. Florez-Palacios, A. Zeng, X. Wang, R.A. Bowen, A. Miller, H. Berry, Crop Sci. (2018). https://doi.org/10.2135/cropsci2018.03.0173

    Article  Google Scholar 

  58. E.D. Murray, S.D. Arntfield, M.A.H. Ismond, Can. Inst. Food. Sci. Technol. 18(2), 158–162 (1985). https://doi.org/10.1016/S0315-5463(85)717

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Steve Vaughn, Steve Lyle, Gary Grose, Elizabeth Krietemeyer, and Julie Anderson for their assistance with the research, Deborah Jackson for expert secretarial assistance, and Z. Lewis Liu for commences and suggestions. The funding for this research is by the U.S. Department of Agriculture and the United Soybean Board. The authors appreciate the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean X. Liu.

Ethics declarations

Conflict of interest

No conflict of interest is reported.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Mention of trade names or commercial products in this article is solely for the purpose of providing scientific information and does not imply recommendation or endorsement by the US Department of Agriculture. USDA is an equal opportunity provider and employer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S.X., Chen, D., Plumier, B. et al. Impact of particle size fractions on composition, antioxidant activities, and functional properties of soybean hulls. Food Measure 15, 1547–1562 (2021). https://doi.org/10.1007/s11694-020-00746-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00746-0

Keywords

Navigation