Skip to main content
Log in

Phenolic compounds characterisation and antioxidant activity of black plum (Vitex doniana) fruit pulp and peel from Côte d’Ivoire

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

This study was conducted to first determine the phenolic compounds and then the antioxidant activity of black plum fruit pulp and peel. For these characterisations, classic methods were used. Moreover, the ability of extracts to scavenge free radicals and their reducing power were measured according to 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) methods, respectively. The total polyphenol, flavonoid and anthocyanin contents of pulp and peel ranged from 202.51 ± 4.19 to 463.45 ± 6.85 mg gallic acid equivalent (GAE)/100 g of Dry Weight (DW), 75.71 ± 1.03 to 145.55 ± 1.03 mg quercetin equivalent (QE)/100 g DW, and from 1.91 ± 0.08 to 8.28 ± 0.83 mg cyanidin 3-O-β-D-glucoside equivalent (C3GE)/100 g DW respectively. However, these compounds were higher in peel extracts than in pulp extracts. In addition, peel extract showed the strongest antioxidant capacities. Significant correlations were found between methods applied to determine antioxidant activity (DPPH and FRAP) in black plum pulp and peel extracts and their total phenols and flavonoids contents. Cinnamic acid and gallic acid were mains phenols in pulp and peel extracts respectively, except fruits peel from Ferke where the main phenol was cinnamic acid. Thus, peel of black plum fruit could be used as an inexpensive and natural source of antioxidants and contribute to the prevention of degenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. H. Cai, D.G. Harrison, Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 87, 840–844 (2000)

    CAS  PubMed  Google Scholar 

  2. J. Himmelfarb, P. Stenvinkel, T.A. Ikizler, R.M. Hakim, Perspectives in renal medicine: the elephant in uremia: oxidant stress as a unifying concept of cardiovascular disease in uremia. Kidney Int 62(5), 1524–1538 (2002)

    CAS  PubMed  Google Scholar 

  3. D. Harrison, K.K. Griendling, U. Landmesser, B. Hornig, H. Drexler, Role of oxidative stress in atherosclerosis. Am J Cardiol 91(3 SUPPL.), 7–11 (2003)

    Google Scholar 

  4. E. Takimoto et al., Oxidant stress from nitric oxide synthase-3 uncoupling stimulates cardiac pathologic remodeling from chronic pressure load. J Clin Invest 115(5), 1221–1231 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  5. G.E. Forcados, C.N. Chinyere, M.L. Shu, Acalypha wilkesiana: therapeutic and toxic potential. J Med Surg Pathol 1, 122 (2016)

    Google Scholar 

  6. M. Alpay, L.R.F. Backman, X.D. Cheng, M. Dukel, W.J. Kim, L.B. Ai, K.D. Brown, Oxidative stress shapes breast cancer phenotype through chronic activation of ATM-dependent signaling. Breast Cancer Res Treat 151, 75–87 (2015)

    CAS  PubMed  Google Scholar 

  7. D.M. Small, J.S. Coombes, N. Bennett, D.W. Johnson, G.C. Gobe, Oxidative stress, anti-oxidant therapies and chronic kidney disease. Nephrology 17(4), 311–321 (2012)

    CAS  PubMed  Google Scholar 

  8. K. Apel, H. Hirt, Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55(1), 373–399 (2004)

    CAS  Google Scholar 

  9. M.P. Murphy, How mitochondria produce reactive oxygen species. Biochem J 417(1), 1–13 (2009)

    CAS  PubMed  Google Scholar 

  10. S. Saha, L. Kumar, B.W. Soo, C. Jihye, Y.K. Hye, Y. Kyeongseok, M.D. Gwang, A.C. Ahmed, G. Ssang, Correlation between oxidative stress, nutrition, and cancer initiation. Int J Mol Sci 18(7), 1544 (2017)

    PubMed Central  Google Scholar 

  11. M. Sharifi-rad, N.V.A. Kumar, P. Zucca, E.M. Varoni, L. Dini, E. Panzarini, J. Rajkovic, P.F.T. Valere, E. Azzini, I. Peluso, A.P. Mishra, M. Nigam, A. Manisha, Lifestyle oxidative stress, and antioxidants : back and forth in the pathophysiology of chronic diseases. Front Physiol 11, 1–21 (2020)

    Google Scholar 

  12. A. Singh, R. Kukreti, L. Saso, Oxidative stress : a key modulator in neurodegenerative diseases. Molecules 24, 1583 (2019)

    CAS  PubMed Central  Google Scholar 

  13. T. Tian, Z. Wang, J. Zhang, Review article pathomechanisms of oxidative stress in inflammatory bowel disease and potential antioxidant therapies. Oxid Med Cell Longev 2017, 4535194 (2017)

    PubMed  PubMed Central  Google Scholar 

  14. D. Haj Mouhamed, A. Ezzaher, F. Neffati, W. Douki, L. Gaha, M.F. Najjar, Étude d’un marqueur du stress oxydant chez les fumeurs: le malondialdéhyde. Immuno-Anal Biol Spec 27(4), 153–158 (2012)

    Google Scholar 

  15. N.D. Ouattara, E. Gaille, F.W. Stauffer, A. Bakayoko, Diversité floristique et ethnobotanique des plantes sauvages comestibles dans le Département de Bondoukou (Nord- Est de la Côte d ’ Ivoire ). J Appl Biol 98, 9284–9300 (2016)

    Google Scholar 

  16. F.K. Traore, P.A. Ahi, Y.K. Kone, D. Soro, E.N. Assidjo, Profils des consommateurs et caractérisations physiques et chimiques des fruits de la prune noire (Vitex doniana) du Département de Bondoukou au Nord-Est de la Côte d’Ivoire. Int J Innov Appl Stud 25(1), 121–130 (2018)

    CAS  Google Scholar 

  17. M. Tiébré, D. Ouattara, B. Tra, A. Vroh, A. Gnagbo, K. Edouard, Diversité floristique et disponibilité des plantes utilitaires en zone soudanienne de la Côte d ’ Ivoire. J Appl Biol 107, 9699–9707 (2016)

    Google Scholar 

  18. K.H. Soro, K.K. Youssouf, A.K. David, S. Doudjo, E.F. Eric, A.N. Emmanuel, Caractérisation Biochimique De La Pulpe des Fruits Du Prunier Noir (Vitex Doniana) De La Côte d’Ivoire. Eur Sci J 14(3), 252–270 (2018)

    Google Scholar 

  19. A.K. Martial-Didier, K.K. Hubert, K.E. Jean Parfait, T. Kablan, Phytochemical properties and proximate composition of papaya (Carica papaya L. var solo 8) peels. Turk J Agric 5(6), 676–680 (2017). https://doi.org/10.24925/turjaf.v5i6.676-680.1154

    Article  Google Scholar 

  20. N.A. Abdul Aziz, L.M. Wong, R. Bhat, L.H. Cheng, Evaluation of processed green and ripe mango peel and pulp flours (Mangifera indica var. Chokanan) in terms of chemical composition, antioxidant compounds and functional properties. J Sci Food Agric 92(3), 557–563 (2012)

    CAS  PubMed  Google Scholar 

  21. Z. Xue, W. Feng, J. Cao, D. Cao, W. Jiang, Antioxidant activity and total phenolic contents in peel and pulp of chinese jujube (ziziphus jujuba mill) fruits. J Food Biochem 33(5), 613–629 (2009). https://doi.org/10.1111/j.1745-4514.2009.00241.x

    Article  CAS  Google Scholar 

  22. S. Gorinstein, O. Martin-belloso, A. Lojek, C. Milan, R. Soliva-fortuny, Y. Park, S. Trakhtenberg, Comparative content of some phytochemicals in Spanish apples, peaches and pears. J Sci Food Agric (2002). https://doi.org/10.1002/jsfa.1178

    Article  Google Scholar 

  23. J.L. Mau, S.Y. Tsai, Y.H. Tseng, S.J. Huang, Antioxidant properties of methanolic extracts from Ganoderma tsugae. Food Chem 93(4), 641–649 (2005)

    CAS  Google Scholar 

  24. X. Gao, M. Ohlander, N. Jeppsson, L. Bjo, V. Trajkovski, Changes in antioxidant effects and their relationship to phytonutrients in fruits of sea buckthorn (Hippophae rhamnoides L.) during maturation. J Agric Food Chem 48, 1485–1490 (2000)

    CAS  PubMed  Google Scholar 

  25. A. Meda, C.E. Lamien, M. Romito, J. Millogo, O.G. Nacoulma, Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chem 91(3), 571–577 (2005)

    CAS  Google Scholar 

  26. J. Lee, R.W. Durst, R.E. Wrolstad, Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J AOAC Int 88(5), 1269–1278 (2005)

    CAS  PubMed  Google Scholar 

  27. W. Brand-Williams, M.E. Cuvelier, C. Berset, Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol 28(1), 25–30 (1995)

    CAS  Google Scholar 

  28. Y.C. Hseu et al., Antioxidant activities of Toona Sinensis leaves extracts using different antioxidant models. Food Chem Toxicol 46(1), 105–114 (2008)

    CAS  PubMed  Google Scholar 

  29. H. Sakakibara, Y. Honda, S. Nakagawa, H. Ashida, K. Kanazawa, Simultaneous determination of all polyphenols in vegetables, fruits, and teas. Food Chem 51(3), 571–581 (2003)

    CAS  Google Scholar 

  30. M.C. Garau, S. Simal, C. Rosselló, A. Femenia, Effect of air-drying temperature 531 on physico-chemical properties of dietary fibre and antioxidant capacity of orange (Citrus aurantium v. Canoneta) by-products. Food Chem 104(3), 1014–1024 (2007)

    CAS  Google Scholar 

  31. V. Goulas, G.A. Manganaris, Exploring the phytochemical content and the antioxidant potential of Citrus fruits grown in Cyprus. Food Chem 131(1), 39–47 (2012)

    CAS  Google Scholar 

  32. B. Levaj, D.U. Verica, D.B. Kovačević, N. Krasnići, Determination of flavonoids in pulp and peel of mandarin fruits. Agric Conspec Sci 74(3), 221–225 (2009)

    Google Scholar 

  33. M. Reza et al., Comparative antioxidant activity and total flavonoid content of Persian pomegranate (Punica granatum L.) cultivars. Iran J Pharm Res 10(3), 519–524 (2011)

    Google Scholar 

  34. D. Marinova, F. Ribarova, M. Atanassova, Total phenolics and total flavonoids in bulgarian fruits and vegetables. J Univ Chem Technol Met 40(3), 255 (2005)

    CAS  Google Scholar 

  35. D.L. Luthria, S. Mukhopadhyay, D.T. Krizek, Content of total phenolics and phenolic acids in tomato (Lycopersicon esculentum Mill.) fruits as influenced by cultivar and solar UV radiation. J Food Compos Anal 19(8), 771–777 (2006)

    CAS  Google Scholar 

  36. L. Jaakola, A. Hohtola, Effect of latitude on flavonoid biosynthesis in plants. Plant Cell Environ 33(8), 1239–1247 (2010)

    CAS  PubMed  Google Scholar 

  37. U. Tiwari, E. Cummins, Factors influencing levels of phytochemicals in selected fruit and vegetables during pre- and post-harvest food processing operations. Food Res Int 50(2), 497–506 (2013)

    CAS  Google Scholar 

  38. S.K. Lee, A.A. Kade, Pre-harvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biol Technol 20(3), 207–220 (2000)

    CAS  Google Scholar 

  39. U. Moor, K. Karp, P. Põldma, A. Pae, Cultural systems affect content of anthocyanins and vitamin C in strawberry fruits. Eur J Hortic Sci 70(4), 195–201 (2005)

    CAS  Google Scholar 

  40. C.M. Cantín, M.A. Moreno, Y. Gogorcena, Evaluation of the antioxidant capacity, phenolic compounds, and vitamin C content of different peach and nectarine [Prunus persica (L.) batsch] breeding progenies. J Agric Food Chem 57(11), 4586–4592 (2009)

    PubMed  Google Scholar 

  41. S.M. Ribeiro, J.H. Queiroz, M.E. de Queiroz, F.M. Campos, Sant’Ana HM, “Antioxidant in mango (Mangifera indica L.) pulp.” Plant Foods Hum Nutr 62(1), 13–17 (2007)

    CAS  Google Scholar 

  42. P.M.B. Nihort, Chemical and organoleptic characterization of pawpaw and guava leathers. World J Agric Sci 1(1), 50–51 (2005)

    Google Scholar 

  43. M. Anttonen, R. Karjalainen, Environmental and genetic variation of phenolic compounds in red raspberry. J Food Compos Anal 18(8), 759–769 (2005)

    CAS  Google Scholar 

  44. Ndhala et al., Phenolic composition of Flacourtia indica, Opuntia megacantha and Sclerocarya birrea. Food Chem 103(1), 82–87 (2007)

    Google Scholar 

  45. J. Zhang et al., Effect and mechanism of action of cinnamic acid on the proliferation and apoptosis of Leukaemia cells. Biomed Res 25(3), 405–408 (2014)

    Google Scholar 

  46. F. Natella, M. Nardini, M. Di Felice, C. Scaccini, Benzoic and cinnamic acid derivatives as antioxidants: structure- activity relation. J Agric Food Chem 47(4), 1453–1459 (1999)

    CAS  PubMed  Google Scholar 

  47. M. Strlič, T. Radovič, J. Kolar, B. Pihlar, Anti- and prooxidative properties of gallic acid in fenton-type systems. J Agric Food Chem 50(22), 6313–6317 (2002)

    PubMed  Google Scholar 

  48. H. Gautier et al., How does tomato quality (sugar, acid, and nutritional quality) vary with ripening stage, temperature, and irradiance? J Agric Food Chem 56(4), 1241–1250 (2008)

    CAS  PubMed  Google Scholar 

  49. E. Schwartz et al., Environmental conditions affect the color, taste, and antioxidant capacity of 11 pomegranate accessions’ fruits. J Agric Food Chem 57(19), 9197–9209 (2009)

    CAS  PubMed  Google Scholar 

  50. F. Carbone et al., Developmental, genetic and environmental factors affect the expression of flavonoid genes, enzymes and metabolites in strawberry fruits. Plant Cell Environ 32(8), 1117–1131 (2009)

    CAS  PubMed  Google Scholar 

  51. M.A. Rosales et al., The effect of environmental conditions on nutritional quality of cherry tomato fruits: evaluation of two experimental Mediterranean greenhouses. J Sci Food Agric 91(1), 152–162 (2011)

    CAS  PubMed  Google Scholar 

  52. G.E. Pereira et al., Microclimate influence on mineral and metabolic profiles of grape berries. J Agric Food Chem 54(18), 6765–6775 (2006)

    CAS  PubMed  Google Scholar 

  53. P.R. Jeyaramraja, P.K. Pius, R.R. Kumar, D. Jayakumar, Soil moisture stress-induced alterations in bioconstituents determining tea quality. J Sci Food Agric 83(12), 1187–1191 (2003)

    CAS  Google Scholar 

  54. M.H. Jang, X.L. Piao, J.M. Kim, S.W. Kwon, J.H. Park, Inhibition of cholinesterase and amyloid-&bgr; aggregation by resveratrol oligomers from Vitis amurensis. Phyther Res 22(4), 544–549 (2008)

    CAS  Google Scholar 

  55. J. Levett, Review article. Aust Libr J 35(1), 53–54 (1986)

    Google Scholar 

  56. G. Cao, R.L.P. Emin Sofic, Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships. Free Radic Biol Med 15, 749–760 (1988)

    Google Scholar 

  57. E.J. Lien, S. Ren, H.H. Bui, R. Wang, Quantitative structure-activity relationship analysis of phenolic antioxidants. Free Radic Biol Med 26(3–4), 285–294 (1999)

    CAS  PubMed  Google Scholar 

  58. E. Sariburun, S. Şahin, C. Demir, C. Türkben, V. Uylaşer, Phenolic content and antioxidant activity of raspberry and blackberry cultivars. J Food Sci 75(4), 328–335 (2010)

    Google Scholar 

  59. K. Robards, P.D. Prenzler, G. Tucker, P. Swatsitang, W. Glover, Phenolic compounds and their role in oxidative processes in fruits. Food Chem 66(4), 401–436 (1999)

    CAS  Google Scholar 

  60. H. Palafox-carlos, E.M. Yahia, G.A. González-aguilar, Identification and quantification of major phenolic compounds from mango (Mangifera indica, cv. Ataulfo ) fruit by HPLC – DAD – MS / MS-ESI and their individual contribution to the antioxidant activity during ripening. Food Chem 135(1), 105–111 (2012)

    CAS  Google Scholar 

  61. P. Reckziegel et al., Antioxidant protection of gallic acid against toxicity induced by Pb in blood, liver and kidney of rats. Toxicol Rep 3, 351–356 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  62. M. Goudarzi, M. Kalantar, H. Kalantar, The Hepatoprotective effect of gallic acid on mercuric chloride-induced liver damage in rats. Jundishapur J Nat Pharm Prod 13(3), e12450 (2017)

    Google Scholar 

  63. P.I. Schimites, H.J. Segat, L.G. Teixeira, L.R. Martins, L.T. Mangini, P.S. Baccin, A.V. Soares, Gallic acid prevents ketamine-induced oxidative damages in brain regions and liver of rats. Neurosci Lett 714, 134560 (2020)

    CAS  PubMed  Google Scholar 

  64. J. Wu, H. Gao, L. Zhao, X. Liao, F. Chen, Z. Wang, X. Hu, Chemical compositional characterization of some apple cultivars. Food Chem 103, 88–93 (2007)

    CAS  Google Scholar 

  65. F. Vieira, G. Borges, C. Copetti, L. Gonzaga, E. Nunes, R. Fett, Activity and contents of polyphenolic antioxidants in the whole fruit, flesh and peel of three apple cultivars. Archivos Latinoamericanos de Nutrición 59, 101–106 (2009)

    CAS  PubMed  Google Scholar 

  66. C. Henríquez, S. Almonacid, I. Chiffelle, T. Valenzuela, M. Araya, L. Cabezas, R. Simpson, H. Speisky, Determination of antioxidant capacity, total phenolic content and mineral composition of different fruit tissue of five apple cultivars grown in chile. Chil J Agric Res 70(4), 523–536 (2010)

    Google Scholar 

  67. C. Guo, J. Yang, J. Wei, Y. Li, J. Xu, Y. Jiang, Antioxidant activities of peel, pulp and seed fractions of common fruits as determined by FRAP assay. Nutr Res 23(12), 1719–1726 (2003)

    CAS  Google Scholar 

  68. J. Kolniak-Ostek, Chemical composition and antioxidant capacity of different anatomical parts of pear (Pyrus communis L.). Food Chem 203, 491–497 (2016)

    CAS  PubMed  Google Scholar 

  69. A. Lamien-Meda et al., Polyphenol content and antioxidant activity of fourteen wild edible fruits from Burkina Faso. Molecules 13(3), 581–594 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  70. X. Ma et al., Polyphenolic compounds and antioxidant properties in mango fruits. Sci Hortic (Amsterdam) 129(1), 102–107 (2011)

    CAS  Google Scholar 

  71. T.A. Sokamte, P.D. Mbougueng, N.L. Tatsadjieu, N.M. Sachindra, Phenolic compounds characterization and antioxidant activities of selected spices from Cameroon. S Afr J Bot 121, 7–15 (2019)

    CAS  Google Scholar 

  72. L. Mira, M.T. Fernandez, M. Santos, R. Rocha, M.H. Florêncio, K.R. Jennings, Interactions of flavonoids with iron and copper ions: a mechanism for their antioxidant activity. Free Radic Res 36(11), 1199–1208 (2002)

    CAS  PubMed  Google Scholar 

  73. C.L. Millar, Q. Duclos, C.N. Blesso, Effects of dietary flavonoids on reverse cholesterol transport, HDL metabolism, and HDL function. Adv Nutr 8(2), 226–239 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  74. T.Y. Wang, Q. Li, K.S. Bi, Bioactive flavonoids in medicinal plants: structure, activity and biological fate. Asian J Pharm Sci 13(1), 12–23 (2018)

    PubMed  Google Scholar 

  75. S. Kiokias, C. Proestos, V. Oreopoulou, Effect of natural food antioxidants against ldl and dna oxidative changes. Antioxidants 7(10), 1–20 (2018)

    Google Scholar 

Download references

Acknowledgements

We thank the Food Products Quality and Safety Laboratory of University of Liege – Gembloux AgroBioTech, especially the laboratory technicians and Dr Touré Yétioman.

Funding

There is no funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception, design and realization. Material preparation, data collection and analysis were performed by TKF and KKY. The first draft of the manuscript was written by TKF and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Koba Fatou Traore.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Traore, K.F., Kone, K.Y., Ahi, A.P. et al. Phenolic compounds characterisation and antioxidant activity of black plum (Vitex doniana) fruit pulp and peel from Côte d’Ivoire. Food Measure 15, 1281–1293 (2021). https://doi.org/10.1007/s11694-020-00719-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00719-3

Keywords

Navigation