Skip to main content
Log in

Fast quantitative determination of phenolic compounds in grape juice by UPLC-MS: method validation and characterization of juices produced with different grape varieties

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

A fast method for the simultaneous quantitative determination of 16 phenolic compounds in grape juice by UPLC-MS was developed and validated. Run time was 4.5 min and the method proved to be specific, linear (r > 0.9961), precise (RSD < 5%), accurate (recovery range was under ± 5%) and sensitive with a limit of detection ranging from 0.45 to 35.34 μg L−1 and limit of quantification ranging from 1.35 to 107.08 μg L−1. The validated method was used to characterize 49 grape juice samples which were produced with different grape varieties. Anthocyanins were the compounds present in the highest amounts on the analyzed samples and BRS-Violeta was the cultivar that presented the highest quantity of phenolic compounds in its juice. Exploratory analysis of the obtained results from the characterization of grape juice samples was performed and a tendency to form groups according to the grape variety used in the elaboration of each juice was observed. Results confirmed that the UPLC-MS method is effective and suitable for the determination of phenolic compounds in grape juice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the article and its supplementary information files. Additional raw data are available from the corresponding author on request.

Code availability

Not applicable.

References

  1. C. Rice-Evans, Antioxidant Food Supplements in Human Health, 1st edn. (Academic Press, San Diego, 1999), p. 496

    Google Scholar 

  2. O. Sorg, C.R. Biologies 327, 649 (2004)

    CAS  PubMed  Google Scholar 

  3. P.R.B. Evora, P.J. Pearson, J.F. Seccombe, H.V. Schaff, Arq. Bras. Cardiol. 66, 7 (1996)

    Google Scholar 

  4. M. Valko, D. Leibfritz, J. Moncol, M.T.D. Cronin, M. Mazur, J. Telser, IJBCB 39, 44 (2007)

    CAS  Google Scholar 

  5. A. Crozier, M.N. Clifford, H. Ashihara, Plant Secondary Metabolites: Occurrence, Structure and Role in the Human Diet (Blackwell Publishing, Oxford, 2006)

    Google Scholar 

  6. R.A. Dixon, N.L. Paiva, Plant Cell 7, 1085 (1995)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. C.C. Guerra, Revista Brasileira de Viticultura e Enologia 4, 90 (2012)

    Google Scholar 

  8. J. López-Hernández, A.R.-B. de Quirós, IJMS 17, 1769 (2016)

    Google Scholar 

  9. M.M.P. Natividade, L.C. Corrêa, S.V.C. de Souza, G.E. Pereira, L.C. de Oliveira Lima, Microchem. J. 110, 665 (2013)

    CAS  Google Scholar 

  10. C.V. da Silva Padilha, G.A. Miskinis, M.E.A.O. de Souza, G.E. Pereira, D. de Oliveira, M.T. Bordignon-Luiz, M. dos Santos Lima, Food Chem. 228, 106 (2017)

    Google Scholar 

  11. L.F. da Silva, C.C. Guerra, D. Klein, A.M. Bergold, Food Chem. 227, 158 (2017)

    PubMed  Google Scholar 

  12. L. Snopek, J. Mlcek, L. Sochorova, M. Baron, I. Hlavacova, T. Jurikova, R. Kizek, E. Sedlackova, J. Sochor, Molecules 23, 1684 (2018)

    PubMed Central  Google Scholar 

  13. A. Stalmach, C.A. Edwards, J.D. Wightman, A. Crozier, J. Agric. Food Chem. 59, 9512 (2011)

    CAS  PubMed  Google Scholar 

  14. A.P. Whelan, W.H.F. Sutherland, M.P. McCormick, D.J. Yeoman, S.A. De Jong, M.J.A. Williams, Intern. Med. J. 34, 224 (2004)

    CAS  PubMed  Google Scholar 

  15. L.A. Rizzon, J. Meneguzzo, Suco de Uva, 1st edn. (Embrapa Informação Tecnológica, Brasília, 2007)

    Google Scholar 

  16. U.A. Camargo, Isabel Precoce—Alternativa Para a Vitivinicultura Brasileira. Comunicado Técnico 54, 1st edn. (Embrapa Uva e Vinho, Bento Gonçalves, 2004)

    Google Scholar 

  17. U.A. Camargo, J.D.G. Maia, J.C. Nachtigal, BRS-Violeta—Nova Cultivar de Uva Para Suco e Vinho de Mesa. Comunicado Técnico 63, 1st edn. (Embrapa Uva e Vinho, Bento Gonçalves, 2005)

    Google Scholar 

  18. A. Hoffman, U.A. Camargo, J.D.G. Maia, Sistema de Produção de Uvas Rústicas para Processamento em Regiões Tropicais do Brasil. Embrapa (2005). Retrieved from https://sistemasdeproducao.cnptia.embrapa.br/FontesHTML/Uva/UvasRusticasParaProcessamento/index.htm

  19. P. Ritschel, J.D.G. Maia, U.A. Camargo, M.C. Zanus, R.T. de Souza, T.V.M. Fajardo, BRS-Magna—Nova Cultivar de Uva Para Suco Com Ampla Adaptação Climática. Comunicado Técnico 125, 1st edn. (Embrapa Uva e Vinho, Bento Gonçalves, 2012)

    Google Scholar 

  20. P. Marchi, A.P.R. Paiotti, R.A. Neto, C.T.F. Oshima, D.A. Ribeiro, Environ. Toxicol. Pharmacol. 37, 819 (2014)

    CAS  PubMed  Google Scholar 

  21. D. Shanmuganayagam, T.F. Warner, C.G. Krueger, J.D. Reed, J.D. Folts, Atherosclerosis 190, 135 (2007)

    CAS  PubMed  Google Scholar 

  22. L.T. Toscano, R.L. Tavares, L.T. Toscano, C.S.O. da Silva, A.E.M. de Almeida, A.C.T. Biasoto, M. da Conceição Rodrigues Gonçalves, A.S. Silva, Appl. Physiol. Nutr. Metab. 40, 899 (2015)

    CAS  PubMed  Google Scholar 

  23. J.A. Vinson, K. Teufel, N. Wu, Atherosclerosis 156, 67 (2001)

    CAS  PubMed  Google Scholar 

  24. FAO-OIV, Table and Dried Grapes- Non-Alcoholic Products of the Vitivinicultural Sector Intended for Human Consumption. FAO-OIV FOCUS 2016 (Food and Agriculture Organization of the United Nations and International Organisation of Vine and Wine, Roma, 2016)

    Google Scholar 

  25. L.M.R. de Mello, Vitivinicultura Brasileira: Panorama 2017. Comunicado Técnico 207, 1st edn. (Embrapa Uva e Vinho, Bento Gonçalves, 2018)

    Google Scholar 

  26. OIV, 2018 World Vitiviniculture Situation. OIV Statistical Report on World Vitiviniculture (International Organisation of Vine and Wine, Paris, 2018)

    Google Scholar 

  27. OIV, Compendium of International Methods of Wine and Must Analysis (International Organisation of Vine and Wine, Paris, 2019)

    Google Scholar 

  28. C. Dani, L.S. Oliboni, R. Vanderlinde, D. Pra, J.F. Dias, M.L. Yoneama, D. Bonatto, M. Salvador, J.A.P. Henriques, J. Med. Food 12, 188 (2009)

    CAS  PubMed  Google Scholar 

  29. D. Fracassetti, N. Lawrence, A.G.J. Tredoux, A. Tirelli, H.H. Nieuwoudt, W.J. Du Toit, Food Chem. 128, 1136 (2011)

    CAS  Google Scholar 

  30. M.-C. Menet, Revue Francophone des Laboratoires 2011, 41 (2011)

    Google Scholar 

  31. D.A. Skoog, D.M. West, F.J. Holler, S.R. Crouch, Fundamentals of Analytical Chemistry, 9th edn. (Cengage, Boston, 2014)

    Google Scholar 

  32. C.C. Guerra, H. Bitarelo, R.L. Ben, A. Marin, Sistema Para Elaboração de Suco de Uva Integral Em Pequenos Volumes: Suquificador Integral. Documentos, 96, 1st edn. (Embrapa Uva e Vinho, Bento Gonçalves, 2016)

    Google Scholar 

  33. V. Marzarotto, in Bebidas Não-Alcoólicas: Ciência e Tecnologia, 1st edn., ed. by W.G. Venturini FIlho (Edgar Blücher, São Paulo, 2010), p. 385

    Google Scholar 

  34. ICH, Validation of Analytical Procedures: Text and Methodology Q2(R1) (International Conference On Harmonisation Of Technical Requirements For Registration Of Pharmaceuticals For Human Use, 2005).

  35. BRASIL, Ministério Da Saúde—MS. Agência Nacional de Vigilância Sanitária—ANVISA. Resolução Da Diretoria Colegiada—RDC No 166, de 24 de Julho de 2017 (2017)

  36. G.A. Helfer, F. Bock, L. Marder, J.C. Furtado, A.B. da Costa, M.F. Ferrão, Quím. Nova 38, 575–579 (2015)

    CAS  Google Scholar 

  37. M.G. Cardozo, N. Medeiros, D. dos Santos Lacerda, D.C. de Almeida, J.A.P. Henriques, C. Dani, C. Funchal, Cell. Mol. Neurobiol. 33, 1123 (2013)

    CAS  PubMed  Google Scholar 

  38. C. Dani, L.S. Oliboni, R. Vanderlinde, D. Bonatto, M. Salvador, J.A.P. Henriques, Food Chem. Toxicol. 45, 2574 (2007)

    CAS  PubMed  Google Scholar 

  39. M.D.C.P. Dutra, L.L. Rodrigues, D. de Oliveira, G.E. Pereira, M. dos Santos Lima, Food Chem. 269, 157 (2018)

    CAS  PubMed  Google Scholar 

  40. A. Ananga, V. Georgiev, J. Ochieng, B. Phills, V. Tsolova, in Production of anthocyanins in grape cell cultures: a potential source of raw material for pharmaceutical, food, and cosmetic industries, ed. by B. Sladonja, D. Poljuha. The Mediterranean Genetic Code—Grapevine and Olive (IntechOpen, 2013), p. 247–287. https://doi.org/10.5772/3442

  41. Ø.M. Andersen, K.R. Markham (eds.), Flavonoids: Chemistry, Biochemistry, and Applications (CRC, Taylor & Francis, Boca Raton, 2006)

    Google Scholar 

  42. Genomenet (2019). Retrieved from https://www.genome.jp/

  43. H. Maeda, N. Dudareva, Annu. Rev. Plant Biol. 63, 73 (2012)

    CAS  PubMed  Google Scholar 

  44. T.A. Holton, E.C. Cornish, Plant Cell 7, 1071 (1995)

    CAS  PubMed  PubMed Central  Google Scholar 

  45. F. He, L. Mu, G.-L. Yan, N.-N. Liang, Q.-H. Pan, J. Wang, M.J. Reeves, C.-Q. Duan, Molecules 15, 9057 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  46. K.G. Martino, M.S. Paul, R.B. Pegg, W.L. Kerr, LWT Food Sci. Technol. 53, 327 (2013)

    CAS  Google Scholar 

  47. K. Sólyom, R. Solá, M.J. Cocero, R.B. Mato, Food Chem. 159, 361 (2014)

    PubMed  Google Scholar 

  48. M. dos Santos Lima, I.D.S.V. Silani, I.M. Toaldo, L.C. Corrêa, A.C.T. Biasoto, G.E. Pereira, M.T. Bordignon-Luiz, J.L. Ninow, Food Chem. 161, 94 (2014)

    Google Scholar 

  49. R.G. Brereton, Chemometrics: Data Analysis for the Laboratory and Chemical Plant, 1st edn. (Wiley, Chichester, 2003)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the Brazilian Coordination for the Improvement of Higher Education Personnel (CAPES—Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and Pharmaceutical Sciences Graduate Program of the Federal University of Rio Grande do Sul (PPGCF-UFRGS—Programa de Pós-Graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul). They are also grateful to the Brazilian Agricultural Research Corporation (Embrapa—Empresa Brasileira de Pesquisa Agropecuária) for providing laboratory infrastructure and grape juice samples.

Funding

The authors would like to acknowledge the financial support from the Brazilian Coordination for the Improvement of Higher Education Personnel (CAPES—Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and Pharmaceutical Sciences Graduate Program of the Federal University of Rio Grande do Sul (PPGCF-UFRGS—Programa de Pós-Graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Alejandra Pisoni Canedo-Reis.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11694_2020_706_MOESM1_ESM.xlsx

Online Resource 1 Concentration of phenolic compounds, in mg L-1, in grape juice samples. <LOQ: under limit of quantification. ND: not detected. Each value represents mean (n=3) ± standard deviation. Compounds: cyanidin-3,5-diglucoside (CY); malvidin-3-O-glucoside (OE); malvidin-3,5-diglucoside (MA); peonidin-3,5-diglucoside (PE); (+)-catechin (CAT); (-)-epicatechin (EPI); (-)-epicatechin gallate (EG); (-)-epigallocatechin gallate (EGG); Procyanidin B1 (PB1); procyanidin B2 (PB2); taxifolin (T); kaempferol (K); myricetin (M); quercetin (Q); rutin (RU); trans-resveratrol (R) (XLSX 21 kb)

Online Resource 2 PC1 and PC2 scores for the grape juice samples studied (XLSX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canedo-Reis, N.A.P., Guerra, C.C., da Silva, L.F. et al. Fast quantitative determination of phenolic compounds in grape juice by UPLC-MS: method validation and characterization of juices produced with different grape varieties. Food Measure 15, 1044–1056 (2021). https://doi.org/10.1007/s11694-020-00706-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00706-8

Keywords

Navigation