Skip to main content
Log in

Comparative analyses of phenolic compounds and antioxidant properties of Chinese jujube as affected by geographical region and drying methods (Puff-drying and convective hot air-drying systems)

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

This work was aimed to investigate the effect of geographical regions and drying methods on phenolics, flavonoids, antioxidant properties, sugars, and acid content of Chinese jujube. The results revealed significant differences in the antioxidant properties and phenolics content of jujube as affected by geographical origin (Hebei, Shandong, Shanxi, Xinjiang, and Henan province) and drying method (puff-drying and convective hot air-drying). The highest concentrations of DPPH (90.01 ± 0.48% DW), FRAP (0.76 ± 0.05 mM TEAC/g DW), TAC (187.16 ± 2.66 mg AEAC /100 g DW), TFC (3.03 ± 0.09 g REAC /100 g DW), TA (1.15 ± 1.10 g CA /100 g DW) and TS (75.10 ± 1.35 g GE /100 g DW) were recorded in the puff dried jujube samples from Xinjiang province. However, samples from Hebei had highest concentration of TPC (2.82 ± 0.13 g GAAC /100 g DW), TANC (46.47 ± 1.64 mg anthocyanin /100 g DW) and TCC (4.27 ± 0.88 mg β-carotene /g DW), while most ABTS (54.45 ± 0.72 µM TEAC/g DW) was recorded in the jujube samples from Henan. Likewise, jujube from Shandong demonstrated highest ferrous chelating activity (89.17 ± 0.52% DW). Similarly, puff dried jujube from Xinjiang had the highest concentration of gallic acid (29.52 ± 0.15 µg/g DW), phloridzin (16.73 ± 0.45 µg/g DW) and cianidanol (60.87 ± 0.71 µg/g DW), whereas, higher concentrations of L-epicatechin (143.59 ± 0.69 µg/g DW) and rutin (10.94 ± 0.78 µg/g DW) were recorded in Hebei, and caffeic acid (66.21 ± 0.88 µg/g DW) in Shanxi province. Conclusively, the bioactive profile of Chinese jujube varies depending upon their geographical origin or drying method used, with puff-drying being a better option to retain the bioactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J.W. Li, L.P. Fan, S.D. Ding, X.L. Ding, Food Chem. 103(2), 454–460 (2007)

    CAS  Google Scholar 

  2. C.S. Wu, Q.H. Gao, X.D. Guo, J.G. Yu, M. Wang, Sci. Hortic. 148, 177–184 (2012)

    CAS  Google Scholar 

  3. R.T. Mahajan, M. Chopda, Pharmacogn. Rev. 3(6), 320 (2009)

    CAS  Google Scholar 

  4. Q. Chen, J. Bi, X. Wu, J. Yi, L. Zhou, Y. Zhou, LWT-Food Sci. and Technol. 64(2), 759–766 (2015)

    CAS  Google Scholar 

  5. H. Zhang, L. Jiang, S. Ye, Y. Ye, F. Ren, Food Chem. Toxicol. 48(6), 1461–1465 (2010)

    CAS  PubMed  Google Scholar 

  6. B. Xie, Z. Gu, S. Wang. International Jujube Symposium, 840 (2008)

  7. X.Y. Kang, H.J. MA, Chinese J. Agrometeorol. 1, (2008)

  8. G. Chen, H. Liu, J. Zhang, P. Liu, S. Dong, Int. J. Biometeorol. 56(4), 621–629 (2012)

    PubMed  Google Scholar 

  9. L.X. Wang, Z.Y. Ren, Geogr. Res. 1, (2007)

  10. G.W. Kibue, G. Pan, J. Zheng, L. Zhengdong, L. Mao, Environ. Dev. Sustain. 17(3), 379–391 (2015)

    Google Scholar 

  11. S. Zozio, A. Servent, G. Cazal, D. Mbéguié-A-Mbéguié, S. Ravion, D. Pallet, H. Abel, Food Chem. 150, 448–456 (2014)

    CAS  PubMed  Google Scholar 

  12. A. Slatnar, U. Klancar, F. Stampar, R. Veberic, J. Agric. Food Chem. 59(21), 11696–11702 (2011)

    CAS  PubMed  Google Scholar 

  13. J. Sullivan, R. Konstance, N. Aceto, W. Heiland, J. Craig Jr., J. Food Sci. 42(6), 1462–1463 (1977)

    Google Scholar 

  14. J. Sullivan, J. Craig Jr., R. Konstance, M. Egoville, N. Aceto, J. Food Sci. 45(6), 1550–1555 (1980)

    CAS  Google Scholar 

  15. J. Sullivan, J. Craig Jr., E. Dekazos, S. Leiby, R. Konstance, J. Food Sci. 47(2), 445–448 (1982)

    Google Scholar 

  16. M. Abul-Fadl, T. Ghanem, N. EL-Badry, A. Nasr, Al-Azhar J. Agric. Res. 45(1), 75–90 (2020)

    Google Scholar 

  17. J. Song, G. Gonzalles, J. Liu, Z. Dai, D. Li, C. Liu, M. Zhang, Dry. Technol. 37(8), 929–940 (2019)

    CAS  Google Scholar 

  18. J.Y. Yi, J. Lyu, J.F. Bi, L.Y. Zhou, M. Zhou, J. Food Process. Preserv. 41(6), 13300 (2017)

    Google Scholar 

  19. A. Nath, P. Chattopadhyay, LWT-Food Sci. Technol. 41(4), 707–715 (2008)

    CAS  Google Scholar 

  20. B. Wang, L. Liu, Q. Huang, Y. Luo, Plant Foods Hum. Nutr. 75, 154–160 (2020)

    CAS  PubMed  Google Scholar 

  21. Q. Shi, Z. Zhang, J. Su, J. Zhou, X. Li, Molecules. 23(8), 1–14 (2018)

    CAS  Google Scholar 

  22. A. Wojdyło, A. Figiel, P. Legua, K. Lech, ÁA. Carbonell-Barrachina, F. Hernández, Food Chem. 207, 170–179 (2016)

    PubMed  Google Scholar 

  23. A. Zhu, Int. J. Green Energy 15(3), 201–207 (2018)

    CAS  Google Scholar 

  24. S.K. Chin, C.L. Law, Int. J. Sci. Res. Pub. 2(5), 1–11 (2012)

    Google Scholar 

  25. B. Sultana, F. Anwar, M. Ashraf, Molecules. 14(6), 2167–2180 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  26. A. Alberti, A.A.F. Zielinski, D.M. Zardo, I.M. Demiate, A. Nogueira, L.I. Mafra, Food Chem. 149, 151–158 (2014)

    CAS  PubMed  Google Scholar 

  27. T. Sun, J. Tang, J.R. Powers, J. Agric. Food Chem. 53(1), 42–48 (2005)

    CAS  PubMed  Google Scholar 

  28. V.L. Singleton, R. Orthofer, R.M. Lamuela-Raventós, Elsevier. 152–178 (1999)

  29. E.N. Frankel, E.N.A.S. Meyer, J. Sci. Food Agric. 80(13), 1925–1941 (2000)

    CAS  Google Scholar 

  30. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans 26(9–10), 1231–1237 (1999)

    CAS  Google Scholar 

  31. X. Xiong, M. Li, J. Xie, Q. Jin, B. Xue, T. Sun, Carbohydr. Polym. 92(2), 1166–1171 (2013)

    CAS  PubMed  Google Scholar 

  32. I. Kiliç, Y. Yeşiloğlu, Spectrochim. Acta A. 115, 719–724 (2013)

    Google Scholar 

  33. J. Zhishen, T. Mengcheng, W. Jianming, Food Chem. 64(4), 555–559 (1999)

    CAS  Google Scholar 

  34. G. Gao, P. Ren, X. Cao, B. Yan, X. Liao, Z. Sun, Y. Wang, Food Bioprod. Process. 100, 221–229 (2016)

    CAS  Google Scholar 

  35. L.M.J. de Carvalho, P.B. Gomes, R.L. de Oliveira Godoy, S. Pacheco, P.H.F. do Monte, J.L.V. de Carvalho, S.R.R. Ramos, Food Res. Int. 47(2), 337–340 (2012)

    Google Scholar 

  36. M. Dubois, K.A. Gilles, J.K. Hamilton, P.T. Rebers, F. Smith, Anal. Chem. 28(3), 350–356 (1956)

    CAS  Google Scholar 

  37. C. Pharmacopoeia, Beijing. China 1, 180 (2010)

    Google Scholar 

  38. M. Arslan, Z. Xiaobo, H.E. Tahir, H. Xuetao, A. Rakha, S. Basheer, Z. Hao, J. Food Meas. Charact. 12(4), 2366–2376 (2018)

    Google Scholar 

  39. M. Arslan, M.Z. Xiaobo, H. Xuetao, H. Elrasheid Tahir, J. Shi, M.R. Khan, M. Zareef, J. Near Infrared Spec. 26(5), 275–286 (2018)

    CAS  Google Scholar 

  40. H.E. Tahir, Z. Xiaobo, S. Jiyong, A.A. Mariod, T. Wiliam, Food Anal. Methods 9(5), 1228–1236 (2016)

    Google Scholar 

  41. H.E. Tahir, Z. Xiaobo, L. Zhihua, S. Jiyong, X. Zhai, S. Wang, A.A. Mariod, Food Chem. 226, 202–211 (2017)

    CAS  PubMed  Google Scholar 

  42. M. Arslan, M.A. Rakha, M.R. Khan, X. Zou, J. Food Meas. Charact. 11(4), 1959–1968 (2017)

    Google Scholar 

  43. Q.H. Gao, C.S. Wu, M. Wang, B.-N. Xu, L.J. Du, J. Agric. Food Chem. 60(38), 9642–9648 (2012)

    CAS  PubMed  Google Scholar 

  44. R.G.D. Steel, J.H. Torrie, McGraw-Hill Kogakusha, Ltd. (1980)

  45. A. Vega-Gálvez, K. Ah-Hen, M. Chacana, J. Vergara, J. Martínez-Monzó, P. García-Segovia, K. Di Scala, Food Chem. 132(1), 51–59 (2012)

    PubMed  Google Scholar 

  46. Q.H. Gao, P.T. Wu, J.R. Liu, C.S. Wu, J.W. Parry, M. Wang, Sci. Hortic. 130(1), 67–72 (2011)

    CAS  Google Scholar 

  47. Ö. Kamiloglu, S. Ercisli, M. Sengül, C. Toplu, S. Serçe, African. J. Biotechnol. 8(2), 1 (2009)

    Google Scholar 

  48. S. Mole, S. Waterman, Blackwell Scientific Publications, (1994)

  49. N. Balasundram, K. Sundram, S. Samman, Food Chem 99(1), 191–203 (2006)

    CAS  Google Scholar 

  50. Y. Cai, Q. Luo, M. Sun, H. Corke, Life Sci. 74(17), 2157–2184 (2004)

    CAS  PubMed  PubMed Central  Google Scholar 

  51. P.M. da Silva, C. Gauche, L.V. Gonzaga, A.C.O. Costa, R. Fett, Food Chem. 196, 309–323 (2016)

    PubMed  Google Scholar 

  52. K.E. Heim, A.R. Tagliaferro, D.J. Bobilya, The J. Nutr. Biochem. 13(10), 572–584 (2002)

    CAS  PubMed  Google Scholar 

  53. M.G. Hertog, P.C. Hollman, M.B. Katan, J. Agric. Food Chem. 40(12), 2379–2383 (1992)

    CAS  Google Scholar 

  54. A. Crozier, M.E. Lean, M.S. McDonald, C. Black, J. Agric. Food Chem. 45(3), 590–595 (1997)

    CAS  Google Scholar 

  55. L.W. Wattenberg, Proceedings of the Nutrition Society 49(2), 173–183 (1990)

    CAS  Google Scholar 

  56. H. Wei, L. Tye, E. Bresnick, D.F. Birt, Cancer Res. 50(3), 499–502 (1990)

    CAS  PubMed  Google Scholar 

  57. M. Hudina, M. Liu, R. Veberic, F. Stampar, M. Colaric, The J. Hortic. Sci. Biotechnol. 83(3), 305–308 (2008)

    CAS  Google Scholar 

  58. S. Bekir, N. Adhan, J. Food Compos. Anal. 23(7), 706–710 (2010)

    Google Scholar 

  59. C.L. Hsu, W. Chen, Y.M. Weng, C.Y. Tseng, Food Chem. 83(1), 85–92 (2003)

    CAS  Google Scholar 

  60. M.C. Shih, C.C. Kuo, W. Chiang, Food Chem. 117(1), 114–121 (2009)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support provided by the National Natural Science Foundation of China (31750110458, 31671844, and 31601543); National Key Technology Research and Development Program of China (2018YFD0400803, 2017YFC1600805, 2017YFC1600806, 2016YFD0401104); and China Postdoctoral Science Foundation (2017M611736). We would also like to thank our colleagues in School of Food and Biological Engineering who helped during the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zou Xiaobo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study does not involve human or animals subjects, therefore does not entail ethical considerations.

Informed consent

Informed consent is not applicable for the nature of this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arslan, M., Zareef, M., Tahir, H.E. et al. Comparative analyses of phenolic compounds and antioxidant properties of Chinese jujube as affected by geographical region and drying methods (Puff-drying and convective hot air-drying systems). Food Measure 15, 933–943 (2021). https://doi.org/10.1007/s11694-020-00697-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00697-6

Keywords

Navigation