Skip to main content
Log in

Non-destructive detection of foreign contaminants in toast bread with near infrared spectroscopy and computer vision techniques

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Non-destructive detection methods to identify food foreign contaminants meet the development of the food industry. Near infrared (NIR) spectroscopy and computer vision (CV) have been considerably intriguing due to the advantages of safety and rapidity. In this study, foreign contaminants, including metallic iron, polypropylene plastic, and hair in bread, were identified based on these two techniques. In NIR spectroscopy, the effectiveness of distance match and discriminant analysis methods combined with different spectral pretreatments was compared. It showed that the accuracy was 98%, 94%, 91%, and F-score was 0.97, 0.93, and 0.91 in the validation set for detecting foreign contaminants aforementioned when discriminant analysis combined with Savitzky-Golay smoothing was used. In CV, deep learning based on the modified U-net has applied to segment these contaminants on the surface of the bread; the accuracy of the test set was 95%, 93%, and 92%, respectively. Based on the results, it can be concluded that NIR spectroscopy and CV are both an operational way to detect foreign contaminants in bread. And these two techniques could be combined to apply in on-line detection further.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Quilez, J. Salas-Salvado, Nutr. Rev., 2012, 70(11), 666–678 (2012)

  2. F.N. Hyman et al., Public Health Rep. 108(1), 54–59 (2009)

    Google Scholar 

  3. W. Zhang et al., Crit. Rev. Food Sci. Nutr. 58(14), 2386–2397 (2017)

    Article  Google Scholar 

  4. H.J. Shin et al., Food Chem. 245, 282–288 (2018)

    Article  CAS  Google Scholar 

  5. C. Wang et al., Food Control 97, 100–104 (2019)

    Article  CAS  Google Scholar 

  6. D. Wang et al., Opt. Eng. 57(4), 043103 (2018)

    Google Scholar 

  7. M. Edwards, Detecting Foreign Bodies in Food (Woodhead Publishing Limited, Cambridge, 2004), pp. 86–171

    Book  Google Scholar 

  8. D.G. Carvalho et al., Food Chem. 329, 127142 (2020)

    Article  CAS  Google Scholar 

  9. E.N. Wafula et al., J. Food Eng. 284, 110056 (2020)

    Article  CAS  Google Scholar 

  10. J.U. Porep et al., Trends Food Sci. Technol. 46(2), 211–230 (2015)

    Article  CAS  Google Scholar 

  11. M. Kawasaki et al., Comput. Electron. Agric. 63(1), 22–27 (2008)

    Article  Google Scholar 

  12. M. Lesteur et al., Bioresour. Technol. 102(3), 2280–2288 (2011)

    Article  CAS  Google Scholar 

  13. E.M. Achata, Powder Technol. 336, 555–566 (2018)

    Article  CAS  Google Scholar 

  14. R.A. Viscarra Rossel et al., Geoderma 131(1–2), 59–75 (2006)

    Article  CAS  Google Scholar 

  15. N. Prieto et al., Meat Sci. 83(1), 96–103 (2009)

    Article  CAS  Google Scholar 

  16. L.C. Carvalho et al., Food Control 106, 106695 (2019)

    Article  CAS  Google Scholar 

  17. R. Moscetti et al., J. Food Eng. 118(1), 1–7 (2013)

    Article  Google Scholar 

  18. P. Oliveri et al., Talanta 199, 270–276 (2019)

    Article  CAS  Google Scholar 

  19. R. Moscetti et al., Postharvest Biol. Technol. 99(6), 58–62 (2015)

    Article  CAS  Google Scholar 

  20. R. Moscetti et al., Postharvest Biol. Technol. 87(2), 88–94 (2014)

    Article  Google Scholar 

  21. A. Biancolillo et al., Microchem. J. 145, 252–258 (2019)

    Article  CAS  Google Scholar 

  22. T. Brosnan, D.W. Sun, J. Food Eng. 61(1), 3–16 (2004)

    Article  Google Scholar 

  23. H. Zareiforoush et al., Food Eng. Rev. 7(3), 321–345 (2015)

    Article  Google Scholar 

  24. N. Vélezrivera et al., Food Bioprocess Technol. 7(4), 1183–1194 (2014)

    Article  Google Scholar 

  25. A. Vidal et al., Food Bioprocess Technol. 6(12), 3412–3419 (2013)

    Article  CAS  Google Scholar 

  26. D. Mery et al., Food Bioprocess Technol. 6(8), 2093–2108 (2013)

    Article  Google Scholar 

  27. P.A. Belan et al., Measurement 46(1), 177–184 (2013)

    Article  Google Scholar 

  28. D. Rong et al., Comput. Electron. Agric. 162, 1001–1010 (2019)

    Article  Google Scholar 

  29. X. Zhou et al., Food Chem. 321, 126503 (2020)

    Article  CAS  Google Scholar 

  30. W.S. Cotrim et al., J. Food Eng. 277, 10999616 (2020)

    Article  Google Scholar 

  31. A. Taheri-Garavand et al., J. Food Eng. 278, 109930 (2020)

    Article  Google Scholar 

  32. J. Chen et al., Comput. Electron. Agric. 173, 105393 (2020)

    Article  Google Scholar 

  33. J. Sarmento et al., Talanta 216, 120937 (2020)

    Article  Google Scholar 

  34. H.F. Yuan, et al., In Proceedings of the Second Asian Near Infrared Spectroscopy Conference, Shanghai, China, 2010

  35. V.T. Gabriel, P.J. Schoenmakers, Anal. Chem. 78(13), 4598–4608 (2006)

    Article  Google Scholar 

  36. A. Savitzky, Anal. Chem. 36, 1627–1639 (1964)

    Article  CAS  Google Scholar 

  37. X. Lijuan et al., J. Food Eng. 82, 395–401 (2007)

    Article  Google Scholar 

  38. R.D. Maesschalck et al., Chemometr. Intell. Lab Syst. 50(1), 1–18 (2001)

    Article  Google Scholar 

  39. P. Moallem et al., Inf. Process. Agric. 4(1), 33–40 (2017)

    Google Scholar 

  40. A. Krizhevsky et al., Advances in Neural Information Processing Systems 25 (NIPS, Cambridge, 2012)

    Google Scholar 

  41. L. Li et al., Neurocomputing 392, 277–295 (2020)

    Article  Google Scholar 

  42. O. Ronneberger, et al., In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer. pp. 234–241 (2015)

  43. J. Workman, L. Weyer, Practical Guide to Interpretive Near-Infrared Spectroscopy (CRC Press, Boca Raton, 2007)

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2017YFC1600805).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijuan Xie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, J., Hameed, S., Xie, L. et al. Non-destructive detection of foreign contaminants in toast bread with near infrared spectroscopy and computer vision techniques. Food Measure 15, 189–198 (2021). https://doi.org/10.1007/s11694-020-00627-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00627-6

Keywords

Navigation