Skip to main content
Log in

A low-cost optical sensor to quantify bioactive compounds in fruit

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

This paper discusses the design, development and construction of a low cost system to measure plant-based bioactive compounds. The proposed system uses a light emitting diode (LED), an optical filter, a cuvette holder, a photodiode, an electronic board and a mechanical structure. The results are based on transmittance and reflectance absorptiometric measurements. In order to evaluate the sensitivity of the prototype sensor it was tested against a commercial spectrophotometer. The two systems measured the bioactive compounds of a variety of different fruits (acerola, pineapple, plum, atemoya, banana, cashew apple, kiwi, pitomba, sapodilla, yellow mombin and grape). The coefficient r of the two systems were similar (r = 0.99 for total polyphenols, r = 0.95 for total flavonoids, r = 0.99 for ascorbic acid). Nevertheless, further research is required to improve the precision of this optical sensor, which has significant potential for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A. Brito, J.E. Ramirez, C. Areche, B. Sepúlveda, M.J. Simirgiotis, HPLC-UV-MS profiles of phenolic compounds and antioxidant activity of fruits from three citrus species consumed in Northern Chile. Molecules 19, 17400–17421 (2014)

    Article  Google Scholar 

  2. J.X. Chen, X.F. Wang, Experimental Instruction of Plant Physiology (South China University of Technology Press, Guangzhou, 2002), pp. 125–127. in Chinese

    Google Scholar 

  3. R. Civelli, V. Giovenzana, R. Beghi, E. Naldi, R. Guidetti, R. Oberti, A simplified, light emitting diode (LED) based, modular system to be used for the rapid evaluation of fruit and vegetable quality: development and validation on dye solutions. Sensors 15, 22705–22723 (2015)

    Article  Google Scholar 

  4. V. Edefonti, M. Hashibe, M. Parpinel, F. Turati, D. Serraino, K. Matsuo, Z.F. Zhang, Natural vitamin C intake and the risk of head and neck cancer: a pooled analysis in the International head and neck cancer epidemiology consortium. Int. J. Cancer 137(2), 448–462 (2015)

    Article  CAS  Google Scholar 

  5. M. Hasan, T. Bashir, R. Ghosh, S.K. Lee, H. Bae, An overview of LEDs’ effects on the production of bioactive compounds and crop quality. Molecules 22(9), 1420 (2017)

    Article  Google Scholar 

  6. J.A. Larrauri, P. Ruperez, F. Saura-Calixto, Effect of drying temperature on the stability of polyphenols and antioxidant activity of red grape pomace peels. J. Agric. Food Chem. 45, 1390–1393 (1997)

    Article  CAS  Google Scholar 

  7. R.H. Liu, Health-promoting components of fruits and vegetables in the diet. Adv. Nutr. 4, 384S–392S (2013)

    Article  CAS  Google Scholar 

  8. B. Lorrain, I. Ky, L. Pechemat, P.L. Teissedre, Evolution of analysis of polyphenols from grapes, wines and extracts. Molecules 18, 1076–1100 (2013)

    Article  CAS  Google Scholar 

  9. F. Menichini, R. Tundis, M. Bonesi, M.R. Loizzo, F. Conforti, G. Statti, B. De Cindio, P.J. Houghton, F. Menichini, The influence of fruit ripening on the phytochemical content and biological activity of Capsicum chinense Jacq. cv Habanero. Food Chem. 114, 553–560 (2009)

    Article  CAS  Google Scholar 

  10. V.M. Moo-Huchin, M.I. Moo-Huchin, R.J. Estrada-León, L. Cuevas-Glory, I.A. Estrada-Mota, E. Ortiz-Vázquez, D. Betancur-Ancona, E. Sauri-Duch, Antioxidant compounds, antioxidant activity and phenolic content in peel from three tropical fruits from Yucatan, Mexico. Food Chem. 166, 17–22 (2015)

    Article  CAS  Google Scholar 

  11. M. Obanda, P.O. Owuor, Flavonol composition and caffeine content of green leaf as quality potential indicators of Kenyan black teas. J. Sci. Food Agric. 74, 209–215 (1997)

    Article  CAS  Google Scholar 

  12. L.S. Oliveira, C.F.H. Moura, E.S. De Brito, R.V.S. Mamede, M.R.A. Miranda, Antioxidant metabolism during fruit development of different acerola (Malpighia emarginata D.C) clones. J. Agric. Food Chem. 60, 7957–7964 (2012)

    Article  CAS  Google Scholar 

  13. A. Oniszczuk, LC-ESI-MS/MS analysis and extraction method of phenolic acids from gluten-free precooked buckwheat pasta. Food Anal. Methods 9, 1–6 (2016)

    Article  Google Scholar 

  14. H. Palafox-Carlos, J.F. Ayala-Zavala, G.A. González-Aguilar, The role of dietary fiber in the bioaccessibility and bioavailability of fruit and vegetable antioxidants. J. Food Sci. 76(1), R6–R15 (2011)

    Article  CAS  Google Scholar 

  15. V. Patil, S. Angadi, S. Devdhe, Determination of quercetin by UV spectroscopy as quality control parameter in herbal plant: Cocculus hirsutus. J. Chem. Pharm. Res. 7, 99–104 (2015)

    CAS  Google Scholar 

  16. M.S. Pinto, F.M. Lajolo, M.I. Genovese, Bioactive compounds and quantification of total ellagic acid in strawberries (Fragaria x ananassa Duch). Food Chem. 107, 1629–1635 (2008)

    Article  Google Scholar 

  17. L.M. Ramirez-Lopez, A.M. DeWitt, Analysis of phenolic compounds in commercial dried grape pomace by high-performance liquid chromatography electrospray ionization mass spectrometry. Food Sci. Nutr. 2(5), 470–477 (2014)

    Article  CAS  Google Scholar 

  18. G. Rateni, P. Dario, F. Cavallo, Smartphone-based food diagnostic technologies: a review. Sensors 17, 1453 (2017)

    Article  Google Scholar 

  19. L.C.R.C. Silva, J.M. David, R.S.Q. Borges, S.L.C. Ferreira, J.P.R. David, R.E. Bruns, Determination of flavanones in orange juices obtained from different sources by HPLC/DAD. J. Anal. Methods Chem. 2014, 1 (2014)

    Article  Google Scholar 

  20. K.O.D. Souza, C.F.H. Moura, E.S.D. De Brito, M.R.A. Miranda, Antioxidant compounds and total antioxidant activity in fruits of acerola from cv. Flor Branca, Florida Sweet and BRS 366. Rev. Bras. Frutic. 36(2), 294–304 (2014)

    Article  Google Scholar 

  21. V. Spínola, E.J. Llorent-Martínez, P.C. Castilho, Determination of vitamin C in foods: current state of method validation. J. Chromatogr. A 1369, 2–17 (2014)

    Article  Google Scholar 

  22. S. Ullah, A. Hussain, J. Ali, K. Ullah, A. Ullah, A simple and rapid HPLC method for analysis of vitamin-C in local packed juices of Pakistan Middle-East. J. Sci. Res. 12(8), 1085–1091 (2012)

    CAS  Google Scholar 

  23. Y. Xu, S. Burton, C. Kim, E. Sismour, Phenolic compounds, antioxidant, and antibacterial properties of pomace extracts from four Virginia-grown grape varieties. Food Sci. Nutr. 4(1), 125–133 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge CNPq (National Council for Scientific and Technological Development), CAPES (Coordination for the Improvement of Higher Education Personnel) and FUNCAP (Ceara State Agency for Technology and Scientific Development) for the providing financial support for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glendo de Freitas Guimarães.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miranda, J.I.S., Lopes, M.M.A., de Souza, K.O. et al. A low-cost optical sensor to quantify bioactive compounds in fruit. Food Measure 14, 3580–3589 (2020). https://doi.org/10.1007/s11694-020-00601-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00601-2

Keywords

Navigation