Skip to main content

Advertisement

Log in

Optimization of high hydrostatic pressure assisted extraction of stinging nettle leaves using response surface methodology experimental design

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

High hydrostatic pressure assisted extraction (HPE) is a very promising extraction methodology since it can operate at room temperature and therefore can avoid heat-sensitive compounds changes. Furthermore, it is recognized as a fast technology (only a few minutes) and it is also an already proven environmentally friendly technology. This is the first work to study HPE effect as a new extraction method to obtain improved extracts from stinging nettle, a commonly known weed, traditionally used as folk medicine and with several biological properties proven scientifically. In this work, the HPE process was optimized by an experimental design via response surface methodology using a central composite face-centered design. The effect of pressure level, extraction time, and solvent concentration were evaluated, as also the impact of HPE on total phenolics (TPC), flavonoids, pigments, and antioxidant activity. Results showed that experimental data could be well fitted to second-order polynomial mathematical models, since lack-of-fit values were non-significant and the regression coefficients were above 75%. The optimal conditions for the overall maximization of extraction yield, TPC and antioxidant activity were 200 MPa, 10.2–15.6 min, and 0% ethanol (aqueous extracts), which were tested in a further experiment confirming the predictability of all models (difference by percentage between predicted and experimental optimum were all below 10%. When compared to extraction at atmospheric pressure, HPE allowed increasing the extraction yield about 50.5%; TPC about 84.4%; and antioxidant activity about 77.7%. All the models fitted well the experimental data, being the observed values close to the predicted ones by the model equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. A. Belscak-Cvitanovic, D. Komes, K. Durgo, A. Vojvodic, A. Busic, Nettle (Urtica dioica L.) extracts as functional ingredients for production of chocolates with improved bioactive composition and sensory properties. J. Food Sci. Technol. (Mysore) 52(12), 7723–7734 (2015). https://doi.org/10.1007/s13197-015-1916-y

    Article  CAS  Google Scholar 

  2. N. Di Virgilio, E.G. Papazoglou, Z. Jankauskiene, S. Di Lonardo, M. Praczyk, K. Wielgusz, The potential of stinging nettle (Urtica dioica L.) as a crop with multiple uses. Ind. Crops Prod. 68, 42–49 (2015). https://doi.org/10.1016/j.indcrop.2014.08.012

    Article  Google Scholar 

  3. D. Orcic, M. Franciskovic, K. Bekvalac, E. Svircev, I. Beara, M. Lesjak, N. Mimica-Dukic, Quantitative determination of plant phenolics in Urtica dioica extracts by high-performance liquid chromatography coupled with tandem mass spectrometric detection. Food Chem. 143, 48–53 (2014). https://doi.org/10.1016/j.foodchem.2013.07.097

    Article  CAS  PubMed  Google Scholar 

  4. S. Otles, B. Yalcin, Phenolic compounds analysis of root, stalk, and leaves of nettle. Sci. World J. 2012, 1–12 (2012). https://doi.org/10.1100/2012/564367

    Article  CAS  Google Scholar 

  5. K.N. Jan, K. Zarafshan, S. Singh, Stinging nettle (Urtica dioica L.): a reservoir of nutrition and bioactive components with great functional potential. J. Food Measur. Charact. 11(2), 423–433 (2017). https://doi.org/10.1007/s11694-016-9410-4

    Article  Google Scholar 

  6. S. Sekhon-Loodu, H.P.V. Rupasinghe, Evaluation of antioxidant, antidiabetic and antiobesity potential of selected traditional medicinal plants. Front. Nutr. (2019). https://doi.org/10.3389/fnut.2019.00053

    Article  PubMed  PubMed Central  Google Scholar 

  7. H.S. Lee, H.J. Lee, H.J. Yu, D.W. Ju, Y. Kim, C.T. Kim, C.J. Kim, Y.J. Cho, N. Kim, S.Y. Choi, H.J. Suh, A comparison between high hydrostatic pressure extraction and heat extraction of ginsenosides from ginseng (Panax ginseng CA Meyer). J. Sci. Food Agric. 91(8), 1466–1473 (2011). https://doi.org/10.1002/jsfa.4334

    Article  CAS  PubMed  Google Scholar 

  8. X. He, W.-B. Yoon, S.-J. Park, D.-S. Park, J. Ahn, Effects of pressure level and processing time on the extraction of total phenols, flavonoids, and phenolic acids from Deodeok (Codonopsis lanceolata). J. Food Sci. Biotechnol. 20(2), 499–505 (2011). https://doi.org/10.1007/s10068-011-0069-7

    Article  CAS  Google Scholar 

  9. H.-W. Huang, C.-P. Hsu, B.B. Yang, C.-Y. Wang, Advances in the extraction of natural ingredients by high pressure extraction technology. Trends Food Sci. Technol. 33(1), 54–62 (2013). https://doi.org/10.1016/j.tifs.2013.07.001

    Article  CAS  Google Scholar 

  10. J. Azmir, I.S.M. Zaidul, M.M. Rahman, K.M. Sharif, A. Mohamed, F. Sahena, M.H.A. Jahurul, K. Ghafoor, N.A.N. Norulaini, A.K.M. Omar, Techniques for extraction of bioactive compounds from plant materials: a review. J. Food Eng. 117(4), 426–436 (2013). https://doi.org/10.1016/j.jfoodeng.2013.01.014

    Article  CAS  Google Scholar 

  11. H. Zhao, S. Cheng, L. Zhang, H. Dong, Y. Zhang, X. Wang, Ultra-high-pressure-assisted extraction of wedelolactone and isodemethylwedelolactone from Ecliptae herba and purification by high-speed counter-current chromatography. Biomed. Chromatogr. 33(6), e4497 (2019). https://doi.org/10.1002/bmc.4497

    Article  CAS  PubMed  Google Scholar 

  12. US-FDA (2000) Kinetics of microbial inactivation for alternative food processing technologies—high pressure processing. Food and Drug Administration Center for Food Safety and Applied Nutrition. https://www.fda.gov/Food/FoodScienceResearch/SafePracticesforFoodProcesses/ucm101456.htm. Accessed 10 Feb 2019

  13. S.-Q. Zhang, H. Bi, C. Liu, Extraction of bio-active components from Rhodiola sachalinensis under ultrahigh hydrostatic pressure. Sep. Purif. Technol. 57(2), 277–282 (2007). https://doi.org/10.1016/j.seppur.2007.04.022

    Article  CAS  Google Scholar 

  14. T. Dippong, A. Avram, C. Mihali, Gas-chromatography assessments of the major volatile compounds in traditional fruit brandies throughout fruit and wood maturation. Stud. Univ. Babes-Bolyai Chem. 64(4), 141–155 (2019). https://doi.org/10.24193/subbchem.2019.4.11

    Article  CAS  Google Scholar 

  15. V.L. Singleton, R. Orthofer, R.M. Lamuela-Raventós, Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 299, 152–178 (1999). https://doi.org/10.1016/S0076-6879(99)99017-1

    Article  CAS  Google Scholar 

  16. T. Dippong, M. Cristina, Z. Vosgan, A. Avram, Z. Berinde, D.-C. Anca, Comparative analysis regarding the chemical and microbiological characteristics of some red wine assortments produced in two Romanian viticultural areas. Rev. Chim. 71(1), 411–415 (2020). https://doi.org/10.37358/RC.20.1.7867

    Article  CAS  Google Scholar 

  17. C.C. Chang, M.H. Yang, H.M. Wen, J.C. Chern, Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 10(3), 178–182 (2002). https://doi.org/10.3923/rjphyto.2016.67.74

    Article  CAS  Google Scholar 

  18. H.K. Lichtenthaler, Chlorophylls and carotenoids - pigments of photosynthetic biomembranes. Methods Enzymol. 148, 350–382 (1987). https://doi.org/10.1016/0076-6879(87)48036-1

    Article  CAS  Google Scholar 

  19. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol. Med. 26(9–10), 1231–1237 (1999). https://doi.org/10.1016/S0891-5849(98)00315-3

    Article  CAS  Google Scholar 

  20. G. Bobo-Garcia, G. Davidov-Pardo, C. Arroqui, P. Virseda, M.R. Marin-Arroyo, M. Navarro, Intra-laboratory validation of microplate methods for total phenolic content and antioxidant activity on polyphenolic extracts, and comparison with conventional spectrophotometric methods. J. Sci. Food Agric. 95(1), 204–209 (2015). https://doi.org/10.1002/jsfa.6706

    Article  CAS  PubMed  Google Scholar 

  21. U.-J. Vajić, J. Grujić-Milanović, J. Živković, K. Šavikin, D. Gođevac, Z. Miloradović, B. Bugarski, N. Mihailović-Stanojević, Optimization of extraction of stinging nettle leaf phenolic compounds using response surface methodology. Ind. Crops Prod. 74, 912–917 (2015). https://doi.org/10.1016/j.indcrop.2015.06.032

    Article  CAS  Google Scholar 

  22. T. Dippong, C. Mihali, M.-A. Hoaghia, E. Cical, A. Cosma, Chemical modeling of groundwater quality in the aquifer of Seini town—Someș Plain, Northwestern Romania. Ecotoxicol. Environ. Saf. 168, 88–101 (2019). https://doi.org/10.1016/j.ecoenv.2018.10.030

    Article  CAS  PubMed  Google Scholar 

  23. D.P. Mohapatra, S.K. Brar, R.D. Tyagi, R.Y. Surampalli, Parameter optimization of ferro-sonication pre-treatment process for degradation of bisphenol A and biodegradation from wastewater sludge using response surface model. J. Hazard. Mater. 189(1), 100–107 (2011). https://doi.org/10.1016/j.jhazmat.2011.02.004

    Article  CAS  PubMed  Google Scholar 

  24. Q.D. Do, A.E. Angkawijaya, P.L. Tran-Nguyen, L.H. Huynh, F.E. Soetaredjo, S. Ismadji, Y.-H. Ju, Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J. Food Drug Anal. 22(3), 296–302 (2014). https://doi.org/10.1016/j.jfda.2013.11.001

    Article  CAS  PubMed  Google Scholar 

  25. B. Sultana, F. Anwar, M. Ashraf, Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules (Basel, Switzerland) 14(6), 2167–2180 (2009). https://doi.org/10.3390/molecules14062167

    Article  CAS  Google Scholar 

  26. M. Hojnik, M. Škerget, Ž. Knez, Concentrating the chlorophylls in extracts by pretreatement of stinging nettle leaves with nonpolar organic solvents and supercritical carbon dioxide. J. Food Process Eng. 30(6), 701–716 (2007). https://doi.org/10.1111/j.1745-4530.2007.00137.x

    Article  Google Scholar 

  27. H. Sovová, M. Sajfrtová, M. Bártlová, L. Opletal, Near-critical extraction of pigments and oleoresin from stinging nettle leaves. J. Supercrit. Fluid 30(2), 213–224 (2004). https://doi.org/10.1016/j.supflu.2003.09.014

    Article  CAS  Google Scholar 

  28. J.L. Guil-Guerrero, M.M. Rebolloso-Fuentes, M.E.T. Isasa, Fatty acids and carotenoids from stinging nettle (Urtica dioica L.). J. Food Compos. Anal. 16(2), 111–119 (2003). https://doi.org/10.1016/S0889-1575(02)00172-2

    Article  CAS  Google Scholar 

  29. S. Đurović, B. Pavlić, S. Šorgić, S. Popov, S. Savić, M. Pertonijević, M. Radojković, A. Cvetanović, Z. Zeković, Chemical composition of stinging nettle leaves obtained by different analytical approaches. J. Funct. Foods 32, 18–26 (2017). https://doi.org/10.1016/j.jff.2017.02.019

    Article  CAS  Google Scholar 

  30. J. Vladić, O. Canli, B. Pavlić, Z. Zeković, S. Vidović, M. Kaplan, Optimization of Satureja montana subcritical water extraction process and chemical characterization of volatile fraction of extracts. J. Supercrit. Fluid 120, 86–94 (2017). https://doi.org/10.1016/j.supflu.2016.10.016

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks are due to the University of Aveiro and FCT/MCT for the financial support for the QOPNA & LAQV-REQUIMTE research Unit (FCT UID/QUI/00062/2019 and UIDB/50006/2020) and CBQF (FCT UID/Multi/50016/2019) through national funds and, where applicable, co-financed by the FEDER, within the PT2020 Partnership Agreement. Silvia A. Moreira is grateful for the financial support of this work from FCT through the Doctoral Grant SFRH/BD/110430/2015.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manuela E. Pintado or Jorge A. Saraiva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreira, S.A., Pintado, M.E. & Saraiva, J.A. Optimization of high hydrostatic pressure assisted extraction of stinging nettle leaves using response surface methodology experimental design. Food Measure 14, 2773–2780 (2020). https://doi.org/10.1007/s11694-020-00522-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00522-0

Keywords

Navigation