Skip to main content

Advertisement

Log in

Encapsulation of Lactobacillus casei in alginate microcapsules: improvement of the bacterial viability under simulated gastrointestinal conditions using flaxseed mucilage

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

In this study flaxseed mucilage (FM) was used for co-encapsulating probiotic Lactobacillus casei on the alginate (ALG) matrix. For this purpose, FM was extracted and its physicochemical properties were evaluated. Then, the effect of FM (0, 0.3, 0.6, 0.9, 1.2 and 1.5%) on the growth of L. casei in MRS broth was investigated. Finally, L. casei was encapsulated by a mixture of ALG (1, 2, and 3%) and FM (0 and 0.9%) using the emulsion technique and the stability and survival rate of the probiotic in simulated gastrointestinal conditions were studied. The results showed that FM had a relatively low apparent viscosity (42 ± 2.3 mPa s) and the most important monosaccharides in its structure were xylose, galactose and arabinose. FM positively affected the growth of L. casei in MRS broth and 0.9% FM showed the highest viable bacterial count. After encapsulation, the created microcapsules exhibited spherical morphology with an encapsulation efficiency (EE) of higher than 95%. The mean diameter of the created microspheres significantly increased by increasing the ALG concentration and incorporation of FM (P < 0.05). The addition of FM during microencapsulation increased L. casei resistance against the harmful effects of the simulated digestive system. The least logarithmic cycle reduction during passage through simulated gastrointestinal conditions was seen in the 3% ALG + 0.9% FM and 2% ALG + 0.9% FM. It can be concluded that the addition of FM into ALG microcapsules can improve the survival of L. casei under gastrointestinal conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. G.R. Gibson, H.M. Probert, J. Van Loo, R.A. Rastall, M.B. Roberfroid, Nutr. Res. Rev. 17(2), 259–275 (2004)

    CAS  PubMed  Google Scholar 

  2. A. Peredo, C. Beristain, L. Pascual, E. Azuara, M. Jimenez, LWT Food Sci. Technol. 73, 191–196 (2016)

    CAS  Google Scholar 

  3. C. Hill, F. Guarner, G. Reid et al., Nat. Rev. Gastroenterol. Hepatol. 11(8), 506 (2014)

    PubMed  Google Scholar 

  4. A.E.D.A. Bekhit, A. Shavandi, T. Jodjaja et al., Biocatal. Agric. Biotechnol. 13, 129–152 (2018)

    Google Scholar 

  5. J. Liu, Y.Y. Shim, J.T. Timothy, Y. Wang, M.J. Reaney, Trends Food Sci. Technol. 75, 146–157 (2018)

    CAS  Google Scholar 

  6. M. Chávarri, I. Marañón, R. Ares, F.C. Ibáñez, F. Marzo, M. del Carmen Villarán, Int. J. Food Microbiol. 142(1–2), 185–189 (2010)

    PubMed  Google Scholar 

  7. J. Burgain, C. Gaiani, M. Linder, J. Scher, J. Food Eng. 104(4), 467–483 (2011)

    CAS  Google Scholar 

  8. M. Ahmad, A. Gani, F. Hamed, S. Maqsood, LWT Food Sci. Technol. 110, 231–238 (2019)

    CAS  Google Scholar 

  9. D. Arepally, T.K. Goswami, LWT Food Sci. Technol. 99, 583–593 (2019)

    CAS  Google Scholar 

  10. P. Singh, B. Medronho, L. Alves, G.J. da Silva, M.G. Miguel, B. Lindman, Carbohydr. Polym. 175, 87–95 (2017)

    CAS  PubMed  Google Scholar 

  11. T.Ž. Krunić, N.S. Obradović, M.B. Rakin, Food Chem. 293, 74–82 (2019)

    PubMed  Google Scholar 

  12. A.M. Hugues-Ayala, J.A.-I. Sarabia-Sainz, H. González-Rios, L. Vázquez-Moreno, G. Ramos-Clamont Montfort, LWT Food Sci. Technol. 117, 108639 (2020)

    CAS  Google Scholar 

  13. D. Dimitrellou, P. Kandylis, S. Lević et al., LWT Food Sci. Technol. 116, 108501 (2019)

    CAS  Google Scholar 

  14. M. de Araújo Etchepare, G.L. Nunes, B.R. Nicoloso et al., LWT Food Sci. Technol. 117, 108601 (2020)

    Google Scholar 

  15. J.L. Carlson, J.M. Erickson, B.B. Lloyd, J.L. Slavin, Curr. Dev. Nutr. 2(3), 005 (2018)

    Google Scholar 

  16. P. Kajla, A. Sharma, D.R. Sood, J. Food Sci. Technol. 52(4), 1857–1871 (2015)

    CAS  PubMed  Google Scholar 

  17. J. Zhang, H. Wang, R. Ou, Q. Wang, J. For. Res. 29(2), 533–540 (2018)

    CAS  Google Scholar 

  18. C. Hall III, M.C. Tulbek, Y. Xu, Adv. Food Nutr. Res. 51, 1–97 (2006)

    CAS  PubMed  Google Scholar 

  19. R. Roulard, E. Petit, F. Mesnard, L. Rhazi, Int. J. Biol. Macromol. 86, 840–847 (2016)

    CAS  PubMed  Google Scholar 

  20. M. Nikbakht Nasrabadi, S.A.H. Goli, A. Sedaghat Doost, K. Dewettinck, P. Van der Meeren, Colloids Surf B. 184, 110489 (2019)

    CAS  Google Scholar 

  21. M. Bustamante, M. Villarroel, M. Rubilar, C. Shene, LWT Food Sci. Technol. 62(2), 1162–1168 (2015)

    CAS  Google Scholar 

  22. S. Basiri, N. Haidary, S.S. Shekarforoush, M. Niakousari, Carbohydr. Polym. 187, 59–65 (2018)

    CAS  PubMed  Google Scholar 

  23. F. Mohseni, S.A.H. Goli, Int. J. Biol. Macromol. 140, 959–964 (2019)

    CAS  PubMed  Google Scholar 

  24. W. Cui, G. Mazza, B. Oomah, C. Biliaderis, LWT Food Sci. Technol. 27(4), 363–369 (1994)

    CAS  Google Scholar 

  25. P. Kaushik, K. Dowling, R. Adhikari, C.J. Barrow, B. Adhikari, Food Chem. 215, 333–340 (2017)

    CAS  PubMed  Google Scholar 

  26. W. Horwitz, Official methods of analysis (Association of Official Analytical Chemists, Washington, DC, 1975)

    Google Scholar 

  27. H. Stepan, E. Staudacher, Anal. Biochem. 418(1), 24–29 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  28. P. Darjani, M.H. Nezhad, R. Kadkhodaee, E. Milani, LWT Food Sci. Technol. 73, 162–167 (2016)

    CAS  Google Scholar 

  29. W. Lan, X. Che, Q. Xu et al., Aquacult. Fish. 3(1), 30–37 (2018)

    Google Scholar 

  30. N. Zhang, W. Lan, Q. Wang, X. Sun, J. Xie, Aquacult Fish. 3(4), 163–169 (2018)

    Google Scholar 

  31. A. Homayouni, M.R. Ehsani, A. Azizi, M.S. Yarmand, H. Razavi, Iran. Polym. J. 16(9), 597–606 (2007)

    CAS  Google Scholar 

  32. K.A. Tiani, T.W. Yeung, D.J. McClements, D.A. Sela, Int. J. Food Sci. Nutr. 69(2), 155–164 (2018)

    CAS  PubMed  Google Scholar 

  33. S. Mokhtari, S.M. Jafari, M. Khomeiri, Y. Maghsoudlou, M. Ghorbani, Food Res. Int. 96, 19–26 (2017)

    CAS  PubMed  Google Scholar 

  34. H. Xu, D. Zhang, J. Li, J. Bioresour. Bioprod. 4(3), 177–182 (2019)

    CAS  Google Scholar 

  35. M. Kaur, R. Kaur, S. Punia, Int. J Biol. Macromol. 117, 919–927 (2018)

    CAS  PubMed  Google Scholar 

  36. K.-Y. Qian, S.W. Cui, J. Nikiforuk, H.D. Goff, Carbohydr. Res. 362, 47–55 (2012)

    CAS  PubMed  Google Scholar 

  37. F.S. Mostafavi, J. Food Meas. Charact. 13(1), 840–847 (2019)

    Google Scholar 

  38. F.S. Mostafavi, R. Kadkhodaee, B. Emadzadeh, A. Koocheki, Carbohydr. Polym. 139, 20–27 (2016)

    CAS  PubMed  Google Scholar 

  39. J. Warrand, P. Michaud, L. Picton et al., J. Agric. Food Chem. 53(5), 1449–1452 (2005)

    CAS  PubMed  Google Scholar 

  40. R. Naran, G. Chen, N.C. Carpita, Plant Physiol. 148(1), 132–141 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  41. M. Hadi Nezhad, C. Duc, N.F. Han, F. Hosseinian, J. Food Res. 2(5), 152 (2013)

    CAS  Google Scholar 

  42. M. Fahimdanesh, N. Mohammadi, H. Ahari, M.K. Zanjani, F.Z. Hargalani, K. Behrouznasab, Afr. J. Microbiol. Res. 6(40), 6853–6858 (2012)

    Google Scholar 

  43. D. Mudgil, S. Barak, A. Patel, N. Shah, Int. J. Biol. Macromol. 112, 207–210 (2018)

    CAS  PubMed  Google Scholar 

  44. S. Mitmesser, M. Combs, The microbiota, in Gastrointestinal pathophysiology, ed. by M.H. Floch, Y. Ringel, W. Allan Walker (Academic Press, Boston, 2017), pp. 201–208

    Google Scholar 

  45. B. Gómez, C. Peláez, M.C. Martínez-Cuesta, J.C. Parajó, J.L. Alonso, T. Requena, LWT Food Sci. Technol. 109, 17–25 (2019)

    Google Scholar 

  46. W. Krasaekoopt, S. Watcharapoka, LWT Food Sci. Technol. 57(2), 761–766 (2014)

    CAS  Google Scholar 

  47. S. Sathyabama, R. Vijayabharathi, LWT Food Sci. Technol. 57(1), 419–425 (2014)

    CAS  Google Scholar 

  48. P. Allan-Wojtas, L.T. Hansen, A. Paulson, LWT Food Sci. Technol. 41(1), 101–108 (2008)

    CAS  Google Scholar 

  49. B. Haghshenas, N. Abdullah, Y. Nami, D. Radiah, R. Rosli, A. Yari Khosroushahi, J. Appl. Microbiol. 118(4), 1048–1057 (2015)

    CAS  PubMed  Google Scholar 

  50. S. Cai, M. Zhao, Y. Fang, K. Nishinari, G.O. Phillips, F. Jiang, Food Hydrocoll. 39, 295–300 (2014)

    CAS  Google Scholar 

  51. M. Del Piano, S. Carmagnola, M. Ballarè et al., Gut Microbes. 2(2), 120–123 (2011)

    PubMed  Google Scholar 

  52. F. Nazzaro, F. Fratianni, R. Coppola, A. Sada, P. Orlando, J. Funct. Foods. 1(3), 319–323 (2009)

    Google Scholar 

  53. M. de Araújo Etchepare, G.C. Raddatz, É.M. de Moraes Flores et al., LWT Food Sci. Technol. 65, 511–517 (2016)

    Google Scholar 

  54. F.J. Rodrigues, M.H. Omura, M.F. Cedran, R.F. Dekker, A.M. Barbosa-Dekker, S. Garcia, J. Microencapsul. 34(5), 431–439 (2017)

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Golestan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafizadeh, A., Golestan, L., Ahmadi, M. et al. Encapsulation of Lactobacillus casei in alginate microcapsules: improvement of the bacterial viability under simulated gastrointestinal conditions using flaxseed mucilage. Food Measure 14, 1901–1908 (2020). https://doi.org/10.1007/s11694-020-00437-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00437-w

Keywords

Navigation