Skip to main content
Log in

Multiple spectroscopic fingerprinting platforms for rapid characterization of α-glucosidase inhibitors and antioxidants from some commonly consumed Indonesian vegetables and spices

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Indonesia has one of the most significant biodiversity in the world. Many edible plants have served as the sources of bioactive compounds such as α-glucosidase inhibitors and antioxidants, including several vegetables and spices. However, the potential of active biomolecules present in these food crops have not been fully explored. This study is aimed at screening α-glucosidase inhibitory and antioxidant activities in ten vegetables and spices commonly consumed in Indonesia. Phytochemicals of the most potent samples were characterized using different spectroscopic fingerprinting tools. The samples consisted of Polyscias fruticosum, Anacardium occidentale, Centella asiatica, Moringa oleifera, Arcypteris irregularis, Carica papaya, Kaempferia galanga, Curcuma mangga, Allium schoenoprasum, and Allium fistulosum. The results showed that the leaves of Anacardium occidentale had the best α-glucosidase inhibitor and antioxidant activities (IC50 108.04 and 114.78 μg mL−1, respectively), followed by Arcypteris irregularis (IC50 145.54 ± 1.79 and 179 ± 5.81, respectively) and Polyscias fruticosum (IC50 107.79 ± 0.6 and 137.59 ± 2.67 μg mL−1, respectively) The total phenolic content of the three samples were in the same pattern as the α-glucosidase inhibitor and antioxidant activities. However, the 1H NMR (Nuclear Magnetic Resonance) profile of Arcypteris irregularis contained fewer signals at typical phenolics chemical shifts. Characterization of functional groups associated with the activities was conducted using FTIR (Fourier Transform Infrared) metabolomics of A. occidentale’s n-hexane, chloroform, ethyl acetate, and water fractions. Functional groups that positively correlated with A. occidentale’s bioactivities mostly originated from aromatic frequencies. This was in line with LC–MS (Liquid Chromatography-Mass Spectrometry) analysis results, which revealed that the most active fractions (ethyl acetate fraction) contained quercetin, quercetin-3-galactoside, kaempferol-3-O-glucoside, kaempferol, rhamnetin, and agathisflavone. These results suggested that the under-utilized A. occidentale leaves can be used to develop a functional food with antidiabetic and antioxidant activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. IDF, IDF Diabetes Atlas, 8th edn. (International Diabetes Federation, Brussels, Belgium, 2017). http://www.diabetesatlas.org

  2. ADA, Diabetes Care 37, 81 (2014)

    Article  Google Scholar 

  3. K. Yoh, A. Hirayama, K. Ishizaki, A. Yamada, M. Takeuchi, S.I. Yamagishi, N. Morito, T. Nakano, M. Ojima, H. Shimohata, K. Itoh, S. Takahashi, M. Yamamoto, Genes Cells 13, 1159 (2008)

    CAS  PubMed  Google Scholar 

  4. B.M. Leon, World J. Diabetes 6, 1246 (2015)

    Article  Google Scholar 

  5. R.A. Kowluru, M. Mishra, Biochim. Biophys. Acta Mol. Basis Dis. 1852, 2474 (2015)

    Article  CAS  Google Scholar 

  6. A.G. Miranda-Díaz, L. Pazarín-Villaseñor, F.G. Yanowsky-Escatell, J. Andrade-Sierra, J. Diabetes Res. 2016, 7047238 (2016)

    Article  Google Scholar 

  7. M.T.V. Quilici, F. de Sá Del Fiol, A.E.F. Vieira, M.I. Toledo, J. Diabetes Res. 2016, 8931508 (2016)

    PubMed  Google Scholar 

  8. F. Laar, Vasc. Health Risk Manag. 4, 1189 (2008)

    Article  Google Scholar 

  9. J. Montonen, P. Knekt, R. Järvinen, A. Reunanen, Diabetes Care 27, 362 (2004)

    Article  CAS  Google Scholar 

  10. N.D. Yuliana, S. Budijanto, R. Verpoorte, Y.H. Choi, J. Ethnopharmacol. 150, 95 (2013)

    Article  CAS  Google Scholar 

  11. S. Sancheti, S. Sancheti, S.Y. Seo, Am. J. Pharmacol. Toxicol. 4, 8 (2009)

    Article  Google Scholar 

  12. R. Salazar-Aranda, L.A. Pérez-López, J. López-Arroyo, B.A. Alanis-Barja, N.W. de Torres. Evid. Based Complement. Alternat. Med. 2011, 536139 (2011)

    Article  Google Scholar 

  13. A.M. Muddathir, K. Yamauchi, I. Batubara, E.A.M. Mohieldin, T. Mitsunaga, South African J. Bot. 109, 9 (2017)

    Article  CAS  Google Scholar 

  14. N.D. Yuliana, A. Khatib, R. Verpoorte, Y.H. Choi, Anal. Chem. 83, 6902 (2011)

    Article  CAS  Google Scholar 

  15. E. Rohaeti, M. Rafi, U.D. Syafitri, R. Heryanto, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 137, 1244 (2015)

    Article  CAS  Google Scholar 

  16. D.A. Septaningsih, L.K. Darusman, F.M. Afendi, R. Heryanto, Indones. J. Chem. 18, 43 (2018)

    Article  CAS  Google Scholar 

  17. P. Kamtchouing, S.D. Sokeng, P.F. Moundipa, P. Watcho, H.B. Jatsa, D. Lontsi, J. Ethnopharmacol. 62, 95 (1998)

    Article  CAS  Google Scholar 

  18. M. Toyomizu, S. Sugiyama, R.L. Jin, T. Nakatsu, Phyther. Res. 7, 252 (1993)

    Article  CAS  Google Scholar 

  19. S. Encarnação, M. Malmir, D. Sousa, I.M. da Silva, C. Mello-Sampayo, I.R. Serrano, B. Lima, O. Silva, Planta Med. 80, P2B42 (2014)

    Article  Google Scholar 

  20. T.T.H. Hanh, N.H. Dang, N.T. Dat, J. Chem. 2016, 2082946 (2016)

    Article  Google Scholar 

  21. P. Thi, A. Dao, N.X. Hai, N.T. Nhan, T. Le Quan, N. Thi, T. Mai, Study on DPPH free radical scavenging and lipid peroxidation inhibitory activities of vietnamese medicinal plants. Nat Prod Sci 18, 1–7 (2012)

    Google Scholar 

  22. A. Abd El Latif, B.E.S. El Bialy, H.D. Mahboub, M.A. Abd Eldaim, Biochem. Cell Biol. 92, 413 (2014)

    Article  CAS  Google Scholar 

  23. C. Chen, B. Zhang, Q. Huang, X. Fu, R.H. Liu, Ind. Crops Prod. 100, 1 (2017)

    Article  CAS  Google Scholar 

  24. H. Wu, B. Xu, Int. J. Food Prop. 17, 599 (2014)

    Article  CAS  Google Scholar 

  25. O.O. Ajileye, E.M. Obuotor, E.O. Akinkunmi, M.A. Aderogba, J. King Saud Univ. Sci. 27, 244 (2015)

    Article  Google Scholar 

  26. V.M. Do, C.L. Tran, T.P. Nguyen, Nat. Prod. Res. 0, 1 (2019)

    Article  Google Scholar 

  27. B.J. Taiwo, A.A. Fatokun, O.O. Olubiyi, O.T. Bamigboye-Taiwo, F.R. van Heerden, C.W. Wright, Bioorganic Med. Chem. 25, 2327 (2017)

    Article  CAS  Google Scholar 

  28. L. Eriksson, J. Trygg, S. Wold, J. Chemom. 22, 594 (2008)

    Article  CAS  Google Scholar 

  29. H. Wang, Y. Du, H. Song, Food Chem. 123, 6 (2010)

    Article  CAS  Google Scholar 

  30. N.A. Konan, E.M. Bacchi, J. Ethnopharmacol. 112, 237 (2007)

    Article  Google Scholar 

  31. A.W.L. Andrade, K.C. Machado, K.C. Machado, D.D.R. Figueiredo, J.M. David, M.T. Islam, S.J. Uddin, J.A. Shilpi, J.P. Costa, Chem. Cent. J. 12, 75 (2018)

    Article  CAS  Google Scholar 

  32. L. Milella, S. Milazzo, M. De Leo, M.B. Vera Saltos, I. Faraone, T. Tuccinardi, M. Lapillo, N. De Tommasi, A. Braca, J. Nat. Prod. 79, 2104 (2016)

    Article  CAS  Google Scholar 

  33. H. Wang, Y.J. Du, H.C. Song, Food Chem. 123, 6 (2010)

    Article  CAS  Google Scholar 

  34. S. Habtemariam, Nat. Prod. Commun. 6, 201 (2011)

    CAS  PubMed  Google Scholar 

  35. M. Okawa, J. Kinjo, T. Nohara, M. Ono, DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity of flavonoids obtained from some medicinal plants. Biol. Pharm. Bull. 24, 1202–1205 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Indonesian Ministry of Research, Technology, and Higher Education through Basic Research of National Competitive Research Grant 2019 (Grant No. 3/E1/KP.PTNBH/2019) to Nancy Dewi Yuliana and by the Indonesia Endowment Fund for Education (LPDP), Ministry of Finance of Indonesia to Arfina Sukmawati Arifin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy Dewi Yuliana.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 897 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuliana, N.D., Arifin, A.S. & Rafi, M. Multiple spectroscopic fingerprinting platforms for rapid characterization of α-glucosidase inhibitors and antioxidants from some commonly consumed Indonesian vegetables and spices. Food Measure 14, 1699–1707 (2020). https://doi.org/10.1007/s11694-020-00418-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00418-z

Keywords

Navigation