Skip to main content
Log in

Semi-targeted metabolomic analysis provides the basis for enhanced antioxidant capacities in pigmented rice grains

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

In the present study, polar metabolites including primary metabolites were analysed from red, black and white rice grains using gas chromatography mass spectrometry (GC–MS). Quantitative as well as qualitative differences in metabolite profiles of red, black and white rice were observed. Principal component analysis (PCA) of the data obtained from semi-targeted metabolite profiling showed a clear separation of grains with different pericarp colour. In the PCA scores plot, PC1 separated pigmented rice and non-pigmented rice. While, PC2 separated red rice and black rice. Biplot generated from metabolite profile of the rice grains indicated that vanillic acid, protocatechuic acid and glycerol-3-phosphate differentiate black rice from red and white rice. Erythritol and ribonic acid are present only in red rice causing its separation from black and white rice. Additionally, total phenolic content (TPC), 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulphonicacid) (ABTS) and the reducing potential of extracts in terms of ferric reducing ability of plasma (FRAP) were carried out. DPPH and ABTS radical scavenging activities of pigmented rice are higher than that of white rice, possibly due to the presence of high TPC in their grains. However, reducing power in terms of FRAP is highest in black rice and is comparable in red and white rice. Furthermore, correlation analysis of antioxidant activities with the metabolites was done to identify the possible primary metabolites contributing to antioxidant capacities of pigmented and non-pigmented rice. This study provides a premise for integration of pigmented rice in our daily diet owing to the potential health benefits of the compositional metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. G.F. Deng, X.R. Xu, Y.J. Guo, E.Q. Xia, S. Li, S. Wu, F. Chen, W.H. Ling, H.B. Li, J. Funct. Foods 4, 906 (2012)

    Article  CAS  Google Scholar 

  2. G.F. Deng, X.R. Xu, Y. Zhang, D. Li, R.Y. Gan, H.B. Li, Crit. Rev. Food Sci. Nutr. 53, 296 (2013)

    Article  CAS  Google Scholar 

  3. G. Pereira-Caro, G. Cros, T. Yokota, A. Crozier, J. Agric. Food Chem. 61, 7976 (2013)

    Article  CAS  Google Scholar 

  4. I.L. Massaretto, M.F.M Alves, N.V.M de Mira, A.K. Carmona, U.M.L. Marquez. J. Cereal Sci. 54, 236 (2011)

    Article  CAS  Google Scholar 

  5. Y. Shao, J. Bao, Food Chem. 180, 86 (2015)

    Article  CAS  Google Scholar 

  6. S. Jang, Z. Xu, J. Agric. Food. Chem. 57, 858 (2009)

    Article  CAS  Google Scholar 

  7. T. Oki, M. Masuda, M. Kobayashi, Y. Nishiba, S. Furuta, I. Suda, J. Agric. Food. Chem. 50, 7524 (2002)

    Article  CAS  Google Scholar 

  8. B. Min, A.M. McClung, M.H. Chen, J. Food Sci. 76, 117 (2011)

    Article  CAS  Google Scholar 

  9. W.H. Ling, Q.X. Cheng, J. Ma, T. Wang, J. Nutr. 131, 1421 (2001)

    Article  CAS  Google Scholar 

  10. R. Valarmathi, M. Raveendran, S. Robin, N. Senthil, J. Plant Biochem. Biotechnol. (2014). https://doi.org/10.1007/s13562-014-0274-6

    Article  Google Scholar 

  11. Q. Wang, P. Han, M. Zhang, M. Xia, H. Zhu, J. Ma, M. Hou, Z. Tang, W. Ling, Asia Pac. J. Clin. Nutr. 16, 295 (2007)

    PubMed  CAS  Google Scholar 

  12. J. Shipp, E.S. Abdel-Aal, Open Food Sci. J. 4, 7 (2010)

    Article  CAS  Google Scholar 

  13. F.J. Francis, Cereal Food. World 45, 208 (2000)

    CAS  Google Scholar 

  14. C. Chotimarkorn, S. Benjakul, N. Silalai, Food Res. Int. 41, 616 (2008)

    Article  CAS  Google Scholar 

  15. D.K. Lim, C. Mo, J.H. Lee, N.P. Long, Z. Dong, J. Li, J. Lim, S.W. Kwon, J. Food Drug Anal. 26, 769 (2018)

    Article  CAS  Google Scholar 

  16. S.K. Biswas, D.E. Kim, Y.S. Keum, R.K. Saini, J. Food Meas. Charact. 12, 2484 (2018)

    Article  Google Scholar 

  17. T. Frank, B. Reichardt, Q. Shu, K.H. Engel, J. Cereal Sci. 55, 112 (2012)

    Article  CAS  Google Scholar 

  18. J.K. Kim, S.Y. Park, S.H. Lim, Y. Yeo, H.S. Cho, S.H. Ha, J. Cereal Sci. 57, 14 (2013)

    Article  CAS  Google Scholar 

  19. J. Taylor, R.D. King, T. Altmann, O. Fiehn, Bioinformatics 18, 241 (2002)

    Article  Google Scholar 

  20. Y. Shao, Z. Hu, Y. Yu, R. Mou, Z. Zhu, Food Chem. 239, 733 (2018)

    Article  CAS  Google Scholar 

  21. P. Pramai, N.A.A. Hamid, A. Mediani, M. Maulidiani, F. Abasb, S. Jiamyangyuen, J. Food Drug Anal. 26, 47 (2018)

    Article  CAS  Google Scholar 

  22. G.R. Kim, E.S. Jung, S. Lee, S.H. Lim, S.H. Ha, C.H. Lee, Molecules 219, 15673 (2014)

    Article  CAS  Google Scholar 

  23. B. Min, L. Gu, A.M. McClung, C.J. Bergman, M.H. Chen, Food Chem. 133, 715 (2012)

    Article  CAS  Google Scholar 

  24. M.Y. Kang, C.W. Rico, H.J. Bae, S.C. Lee, Cereal Chem. 90, 497 (2013)

    Article  CAS  Google Scholar 

  25. U.R. Moon, S.K. Sen, A. Mitra, J. Herbs Spices Med. Plants. 20, 115 (2014)

    Article  Google Scholar 

  26. B. De, G. Nag, C. R. Biol. 337, 283 (2014)

    Article  Google Scholar 

  27. J. Xia, I. Sinelnikov, B. Han, D.S. Wishart, Nucleic Acids Res. 43, 251 (2015)

    Article  CAS  Google Scholar 

  28. R. Sompong, S. Siebenhandl-Ehn, G. Linsberger-Martin, E. Berghofer, Food Chem. 124, 132 (2011)

    Article  CAS  Google Scholar 

  29. Y. Shen, L. Jin, P. Xiao, Y. Lu, J. Bao, J. Cereal Sci. 49, 106 (2009)

    Article  CAS  Google Scholar 

  30. Y.P. Huang, H.M. Lai, J. Food Drug Anal. 24, 564 (2016)

    Article  CAS  Google Scholar 

  31. W. Pongsuwan, E. Fukusaki, T. Bamba, T. Yonetani, T. Yamahara, A. Kobayashi, J. Agric. Food. Chem. 55, 231 (2007)

    Article  CAS  Google Scholar 

  32. P. Goufo, H, Trindade. Food Sci Nutr. 2, 75 (2014)

    Article  CAS  Google Scholar 

  33. C.L. Dittgen, J.F. Hoffmann, F.C. Chaves, C.V. Rombaldi, J.M.C. Filho, N.L. Vanier, Food Chem. 288, 297 (2019)

    Article  CAS  Google Scholar 

  34. L. Tarpley, A.L. Duran, T.H. Kebrom, L.W. Sumner, BMC Plant Biol. 5, 8 (2005)

    Article  CAS  Google Scholar 

  35. M. Goto, Y. Murakami, H. Yamanaka, Koshihikari and Minenishiki. J. Jpn. Soc. Food Sci. 43, 821 (1996)

    Article  CAS  Google Scholar 

  36. H. Du, Y. Huo, H. Liu, G.M. Kamal, J. Yang, Y. Zeng, S. Zhao, Y. Liu, CYTA J. Food 17, 128 (2019)

    Article  CAS  Google Scholar 

  37. D. Camacho, A. de la Fuente, P. Mendes, Metabolomics 1, 53 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was a part of a mega project on Sustainable Food Security (File No: 4–25/2013/TS-I) funded by Ministry of Human Resource Development, Government of India. JNRK was a recipient of a doctoral fellowship from the institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adinpunya Mitra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 175 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotamreddy, J.N.R., Hansda, C. & Mitra, A. Semi-targeted metabolomic analysis provides the basis for enhanced antioxidant capacities in pigmented rice grains. Food Measure 14, 1183–1191 (2020). https://doi.org/10.1007/s11694-019-00367-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-019-00367-2

Keywords

Navigation