Skip to main content
Log in

Determination of the quality of liquid smoked tilapia fillets based on physicochemical analysis

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

In an attempt to produce a convenient tilapia (Oerochromis nilotiucs) product with appealing sensory properties, cold liquid-smoking was applied to fish fillets followed by vacuum packaging. Based on biochemical and sensorial analysis, quality monitoring of forty fish samples was conducted over 60 days of refrigerated storage at 2 ± 1 °C. In smoked fillets, the levels of trimethylamine (0.4 to 2.73 mg/100 g) and total volatile bases (12.94 to 21.19 mg/100 g) remained below the threshold limits (10–12 mg/100 g and 30–45 mg/100 g respectively) over the entire period of storage. Among the analysed biogenic amines, only agmatine (23 mg/kg) increased significantly in smoked fillets reaching levels of (229 mg/kg). In parallel, hypoxanthine increased significantly (0.06 to 2.1 µmol/g) over storage. Electrophoretic analysis showed a significant change in sarcoplasmic and myofibrillar protein profiles in smoked fish fillets. The indices of atherogenicity (1.17) and of thrombogenicity (1.08) decreased significantly after spray-smoking to values of (0.7) and (0.6) respectively, without significant change during storage suggesting a stability of the fatty acids profile. Analysis of polycyclic aromatic hydrocarbons (PAHs) of fresh and smoked fillets showed undetectable level of benzo(a)pyrene (BaP) and the sum of 4 PAHs (chrysene, benzo(b)fluoranthene. benz(a)anthracene, Benzo(a)pyrene) (0.22 µg/kg) was far lower than the limit of acceptability (12 µg/kg). The determination of metal trace showed absence of cadmium (Cd) and lead (Pb) and low level of copper (Cu) (1.47 µg/g) in smoked fish fillets. Data submitted to principal component analysis (PCA) showed that cold spray-smoking maintained a good quality of fish fillets by preserving lipids and fatty acids specially PUFA (w3) degradation and by inhibiting bacterial growth as reflected by the reduced production of nitrogenous compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. FAO, Top 10 species groups in global aquaculture 2017. WAPI factsheet (Rome, 2019). http://www.fao.org/3/ca5224en/ca5224en.pdf

  2. E. Prabu, C.B.T. Rojapoplasamy, B. Ahilan, I. Jegan Michael Andro Jeevagan, M. Renuhadevi. Annu Res Rev Biol. 31(3), 1–14 (2019)

    Article  CAS  Google Scholar 

  3. H.A. Elagba Mohamed, R. Al-Maqbaly, H. Mohamed Mansour, Afr. J. Food Sci. 4(10), 650–654 (2010)

    CAS  Google Scholar 

  4. H. Osman, A.R. Suriah, E.C. Law, Food Chem. 73, 55–60 (2001)

    Article  CAS  Google Scholar 

  5. F. Sahena, I.S.M. Zaidul, S. Jinap, N. Saari, H.A. Jahurul, K.A. Abbas, N.A. Norulaini, Compr. Rev. Food Sci. 8, 59–74 (2009)

    Article  CAS  Google Scholar 

  6. K. Fitzsimmons. 8th International Symposium on Tilapia in Aquaculture (2008)

  7. R.F. Robertson, A. Hammond, K. Jauncey, M.C.M. Beveridge, L.A. Lawton, Aquaculture 259, 153–163 (2006)

    Article  CAS  Google Scholar 

  8. S. Rawdkuen, S. Sai-ut, S. Khamsorn, M. Chaijan, S. Benjakul, Food Chem. 112, 112–119 (2009)

    Article  CAS  Google Scholar 

  9. O. Bouzgarrou, NEl Mzougui, S. Sadok, IJFST. 51, 268–277 (2015)

    Google Scholar 

  10. B.H. Chen, Y.S. Lin, J. Agric. Food Chem. 45, 1394–1403 (1997)

    Article  CAS  Google Scholar 

  11. AOAC, Official Methods of Analysis of the Association of Official Analytical Chemists (AOAC, Washington, DC, 1990)

    Google Scholar 

  12. AOAC, Official Methods of Analysis of the Association of Official Analytical Chemists (AOAC, Washington, DC, 1995)

    Google Scholar 

  13. J. Folch, M. Lees, G.S. Stanley, J. Biol. Chem. 52, 497–509 (1957)

    Google Scholar 

  14. M. Dubois, K.A. Gilles., J.K. Hamilton, P.A. Rebers, P.A. Smith, Anal. Chem. 28(3), 350–356 (1956)

    Article  CAS  Google Scholar 

  15. E.F. Hartee, Anal. Biochem. 48, 422–427 (1972)

    Article  Google Scholar 

  16. C. Ruis-cappilas, W.F.A. Hormer, J. Sci. Food Agric. 79, 141 (1999)

    Google Scholar 

  17. S. Sadok, R.F. Uglow, S.J. Haswell, Anal. Chim. Acta 321, 6974 (1996)

    Article  Google Scholar 

  18. C, Génot, in Some factors influencing TBA test. Report of diet-ox project (AIRIII-CT-92-1577) (1996)

  19. S. Moret, D. Smela, T. Populin, L.S. Conte, Food Chem. 89, 355–361 (2005)

    Article  CAS  Google Scholar 

  20. J.M.N. Ryder, J. Agric. Food Chem. 33, 678–680 (1985)

    Article  CAS  Google Scholar 

  21. UNEP/IOC/IAEA, Determination of petroleum hydrocarbons in selected marine organisms. Reference methods for marine pollution studies. N° 72 UNEP (1995)

  22. L.D. Metcalfe, A.A. Schimitz, J.R. Pelka, Annex. Chem. 38, 524–535 (1966)

    Google Scholar 

  23. L. Senso, M.D. Suarez, T. Ruiz-Cara, M. GarciaGallego, Food Chem. (2006). https://doi.org/10.1016/j.foodchem.2006.01.036

    Article  Google Scholar 

  24. T.L.V. Ulbritch, D.A.T. Southgate, Lancet 338, 985–999 (1991)

    Article  Google Scholar 

  25. K. Hashimoto, S. Watanabe, M. Kono, K. Shiro, Chem. Soc. Jpn. 45, 1435–1441 (1979)

    CAS  Google Scholar 

  26. M.M. Bradford, Anal. Biochem. 72, 248–254 (1976)

    Article  CAS  Google Scholar 

  27. U.K. Laemelli, Nature. 227, 680–685 (1970)

    Article  Google Scholar 

  28. IAEA, Training workshop on the analysis of trace metals in biological and sediment samples, 6–8 (25), 41–42 (1996)

  29. H. Martens, T. Næs, Multivariate Calibration (Wiley, Chichester, 1989)

    Google Scholar 

  30. M.B.K. Foh, X. Wenshui, I. Amadou, Q. Jiang. Food Bioprococess Technol. 1–9 (2011)

  31. O.A. Oyelese, J Fish Int. 1(2-4), 92–97 (2006)

    Google Scholar 

  32. M. Cardinal, C. Knockaert, O. Torrissen, S. Sigurgisladottir, T. Morkore, M. Thomassen, J.L. Vallet, Food Res. Int. 34(6), 537–550 (2001)

    Article  CAS  Google Scholar 

  33. Y. Yanar, M. Celik, E. Akamca, Food Chem. 97, 244–247 (2006)

    Article  CAS  Google Scholar 

  34. T. Suzuki, Fish and Krill Protein: Processing Technology (Publisher, London, 1981), p. 115

    Book  Google Scholar 

  35. M. Espe, R. Nortvedt, O. Lie, H. Hafsteinsson, Food Chem. 77, 41–46 (2002)

    Article  CAS  Google Scholar 

  36. S.W.C. Chung, B.T.P. Chan, Food. Addit. Contam. 2(1), 44–51 (2009)

    Article  CAS  Google Scholar 

  37. M. Jnr, B.S. Horsfall, A.I. Kinigoma, B. Spiff, Chem. Soc. Ethiop. 20(1)), 155–159 (2006)

    Google Scholar 

  38. European Commission (EC), Commission Regulation (EU) No 2074/2005 (2005)

  39. L.T. Hansen, T. Gill, H.H. Huss, Food Res. Int. 28(2), 123–130 (1995)

    Article  CAS  Google Scholar 

  40. J.J. Conell, Control of Fish Quality, 4th edn. (Fishing News Books, Ltd., Oxford, 1995)

    Google Scholar 

  41. A. Halasz, A. Barath, L. Simon-sarkadi, W. Holzapfel, Trends Food. Sci. Technol. 5, 42–49 (2004)

    Article  Google Scholar 

  42. S. Liu, W. Fan, S. Zhong, C. Ma, P. Li, K. Zhou, Z. Peng, M. Zhu, Afr. J. Biotechnol. 9(5), 692–701 (2010)

    Article  CAS  Google Scholar 

  43. C. Ruis-cappilas, A. Moral, Food Chem. 89, 347–354 (2005)

    Article  CAS  Google Scholar 

  44. C. Ruis-cappilas, A. Moral, J. Food Sci. 66, 1030–1032 (2001)

    Article  Google Scholar 

  45. B. Ten brink, C. Damink, H.M. Joosten, J.H. Huis in’t veld, Int J Food Microbiol. 11, 73–84 (1990)

    Article  CAS  Google Scholar 

  46. F.A. Vazquez-Ortiz, R. Pacheco-Aguilar, M.E. Lugo-Sanchez, R.E. Villegas-Ozuna, J. Food Comp. Anal. 10, 158–165 (1997)

    Article  CAS  Google Scholar 

  47. C. Alasalvar, K.D.A. Taylor, A. Öksüz, T. Garthwaite, M.N. Alexis, K. Grigorakis, Food Chem. 72, 33–40 (2001)

    Article  CAS  Google Scholar 

  48. H.H. Huss, in Postmortem changes in fish. Quality and Quality Changes in Fresh Fish (FAO Fisheries. Technical Paper No. 348, Rome, 1995), p. 169

  49. K. Kurihara, BioMed. Res. Int. 189402, 10 (2015). https://doi.org/10.1155/2015/189402

    Article  CAS  Google Scholar 

  50. D.H. Cox, C. Karahadia, J. Aquat. Food Prod. Technol. 7, 5–26 (1998)

    Article  CAS  Google Scholar 

  51. S. Metin, N. Erkan, C. Varlik, N. Aran, Eur. Food Res. Technol. 213, 174–177 (2001)

    Article  CAS  Google Scholar 

  52. N. Gutiérrez Guzmán, I. Fernández Segovia, A. Fuentes Lopez, M. Ruiz Rico, J.M. Barat Baviera, Vitae Rev. Fac. Cienc. Farm. Aliment. 22(2), 140–147 (2015)

    Google Scholar 

  53. S. Moret, L.S. Conte, J. Chromatogr. A 882, 245–253 (2000)

    Article  CAS  Google Scholar 

  54. T. Serot, C. Lafficher, Food Chem. 82, 513–519 (2003)

    Article  CAS  Google Scholar 

  55. B.O. Silva, O.T. Adetunde, T.O. Oluseyi, K.O. Olayinka, B.I. Alo, Afr. J. Food Sci. 5(7), 384–391 (2011)

    CAS  Google Scholar 

  56. R.D. Navarro, F.K.S.P. Navarro, O.P.R. Filho, W.M. Ferreira, M.M. Pereira, J.T.S. Filho, Food Chem. 134(1), 215–218 (2012)

    Article  CAS  Google Scholar 

  57. S. Kheriji, MEl Cafsi, W. Masmoudi, J.D. Castell, M.S. Romdhane, Aquacult. Int. 11, 571–582 (2003)

    Article  Google Scholar 

  58. T. Nakagawa, S. Watabe, K. Hashimoto, Nippon Suisan Gakk. 54(6), 999–1004 (1988)

    Article  CAS  Google Scholar 

  59. D. Hopkins, J. Thompson, Aust. J. Agric. Res. 2, 149–166 (2002)

    Article  Google Scholar 

  60. S. Liu, W. Fan, S. Zhong, C. Ma, P. Li, K. Zhou, Z. Peng, Z. Zhu, Afr. J. Biotechnol. 9(5), 692–701 (2010)

    Article  CAS  Google Scholar 

  61. E. Huff-lonergan, S.M. Lonergan, Meat Sci. 71, 194–204 (2005)

    Article  CAS  Google Scholar 

  62. EC (European Commission), Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. OJEU 364, 5 (2006)

    Google Scholar 

Download references

Acknowledgements

This work was conducted within the framework of a collaboration between the Institut National des Sciences et Technologies de la Mer (INSTM) and Institut Français de Recherche pour l’Exploitation de la Mer (IFREMER-France). The authors would like to acknowledge colleague from Bechima station (South of Tunisia) for supplying tilapia samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olfa Bouzgarrou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouzgarrou, O., Baron, R. & Sadok, S. Determination of the quality of liquid smoked tilapia fillets based on physicochemical analysis. Food Measure 14, 978–991 (2020). https://doi.org/10.1007/s11694-019-00347-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-019-00347-6

Keywords

Navigation