Skip to main content
Log in

Effect of a different mobile phase on LC–ESI–MS/MS performance for the identification and quantitation of polar and nonpolar heterocyclic amines in cooked chicken

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

An accurate and sensitive liquid chromatography-electrospray ionisation/multi stage mass spectrometry (LC–ESI–MS/MS) method has been developed for the characterization and quantitation of nine heterocyclic amine (HCA) compounds. We were identified 2-Amino-3-methyl-3H-imidazo[4,5-F]quinoline (IQ), 2-Amino-3-methyl-3H-imidazo[4,5-f]quinoxaline (IQx), 2-Amino-3,4-dimethyl-3H-imidazo[4,5-f]quinoline (MeIQ), 2-Amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-Amino-3,7,8-trimethyl-3H-imidazo[4,5-f]quinoxaline (7,8-DiMeIQx), 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine as polar molecules, and they were eluted accordingly at the beginning of the analysis. However, Norharman, Harman and AαC were identified as a non-polar molecules and were eluted last. The excellent selectivity and sensitivity achieved by the selected reaction monitoring mode permitted satisfactory quantitation and confirmation of the injected HCA compounds with limit of detection and quantitation ranges from 0.17 to 1.44 pg and 0.53 to 4.57 pg, respectively. The recoveries ranged from 74 to 108%, with an interday and intraday precision of 1.6–1.9% and 0.1–0.9%, respectively. The method was successfully applied to identify and quantify the studied HCAs in fried and grilled chicken.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. M. Gibis, Heterocyclic aromatic amines in cooked meat products: causes, formation, occurrence, and risk assessment. Compr. Rev. Food Sci. Food Saf. 15, 269–302 (2016)

    CAS  Google Scholar 

  2. C.M. Lan, B.H. Chen, Effects of soy sauce and sugar on the formation of heterocyclicamines in marinated foods. Food Chem. Toxicol. 40, 989–1000 (2002)

    PubMed  CAS  Google Scholar 

  3. C.Y. Tai, K.H. Lee, B.H. Chen, Effects of various additives on the formation of heterocyclic amines in fried fish fibre. Food Chem. 75, 309–316 (2001)

    CAS  Google Scholar 

  4. J. Damašius, P.R. Venskutonis, R. Ferracane, V. Fogliano, Assessment of the influence of some spice extracts on the formation of heterocyclic amines in meat. Food Chem. 126, 149–156 (2011)

    Google Scholar 

  5. K. Puangsombat, P. Gadgil, T.A. Houser, M.C. Hunt, J.S. Smith, Heterocyclic amine content in commercial ready to eat meat products. Meat Sci. 88, 227–233 (2011)

    PubMed  CAS  Google Scholar 

  6. A. Dundar, C. Sarıçoban, M.T. Yılmaz, Response surface optimization of effects of som processing variables on carcinogenic/mutagenic heterocyclic aromatic amine (HAA) content in cooked patties. Meat Sci. 91, 325–333 (2012)

    PubMed  CAS  Google Scholar 

  7. D. Wong, K.-W. Cheng, M. Wang, Inhibition of heterocyclic amine formation by water-soluble vitamins in Maillard reaction model systems and beef patties. Food Chem. 133, 760–766 (2012)

    CAS  Google Scholar 

  8. K.M. Cooper, N. Jankhaikhot, G. Cuskelly, Optimised extraction of heterocyclic aromatic amines from blood using hollow fibre membrane liquid-phase microextraction and triple quadrupole mass spectrometry. J. Chromatogr. A 1358, 20–28 (2014)

    PubMed  CAS  Google Scholar 

  9. Q. Zhang, G. Li, X. Xiao, Acrylamide-modified graphene for online micro-solid-phase extraction coupled to high-performance liquid chromatography for sensitive analysis of heterocyclic amines in food samples. Talanta 131, 127–135 (2015)

    PubMed  CAS  Google Scholar 

  10. S. Aeenehvand, Z. Toudehrousta, M. Kamankesh, M. Mashayekh, H.R. Tavakoli, A. Mohammadi, Evaluation and application of microwave-assisted extraction and dispersive liquid–liquid microextraction followed by high-performance liquid chromatography for the determination of polar heterocyclic aromatic amines in hamburger patties. Food Chem. 190, 429–435 (2016)

    PubMed  CAS  Google Scholar 

  11. F. Lu, G.K. Kuhnle, Q. Cheng, Heterocyclic amines and polycyclic aromatic hydrocarbons in commercial ready-to-eat meat products on UK market. Food Control 73, 306–315 (2017)

    CAS  Google Scholar 

  12. M. Iwasaki, H. Kataoka, J. Ishihara, R. Takachi, G.S. Hamada, S. Sharma, L. Le Marchand, S. Tsugane, Heterocyclic amines content of meat and fish cooked by Brazilian methods. J. Food Compos Anal 23, 61–69 (2010)

    CAS  Google Scholar 

  13. A. Kondjoyan, S. Chevolleau, E. Grève, P. Gatellier, V. Santé-Lhoutellier, S. Bruel, C. Touzet, S. Portanguen, L. Debrauwer, Formation of heterocyclic amines in slices of Longissimus thoracis beef muscle subjected to jets of superheated steam. Food Chem. 119, 19–26 (2010)

    CAS  Google Scholar 

  14. H. Kataoka, M. Miyake, K. Saito, K. Mitani, Formation of heterocyclic amine-amino acid adducts by heating in a model system. Food Chem. 130, 725–729 (2012)

    CAS  Google Scholar 

  15. L. Sun, F. Zhang, W. Yong, S. Chen, M.-L. Yang, Y. Ling, X. Chu, J.-M. Lin, Potential sources of carcinogenic heterocyclic amines in Chinese mutton shashlik. Food Chem. 123, 647–652 (2010)

    CAS  Google Scholar 

  16. R. Busquets, M. Bordas, F. Toribio, L. Puignou, M.T. Galceran, Occurrence of heterocyclic amines in several home-cooked meat dishes of the Spanish diet. J. Chromatogr. B. 802, 79–86 (2004)

    CAS  Google Scholar 

  17. E. Bermudo, V. Ruiz-Calero, L. Puignou, M.T. Galceran, Analysis of heterocyclic amines in chicken by liquid chromatography with electrochemical detection. Anal. Chim. Acta 536, 83–90 (2005)

    CAS  Google Scholar 

  18. R. Busquets, L. Puignou, M.T. Galceran, K. Skog, Effect of red wine marinades on the formation of heterocyclic amines in fried chicken breast. J. Agric. Food Chem. 54(21), 8376–8384 (2006)

    PubMed  CAS  Google Scholar 

  19. R. Busquets, L. Puignou, M.T. Galceran, K. Wakabayashi, K. Skog, Liquidchromatography-tandem mass spectrometry analysis of 2-amino-1-methyl-6-(4-hydroxyphenyl)imidazo[4,5-b]pyridine in cooked meats. J. Agric. Food Chem. 55(22), 9318–9324 (2007)

    PubMed  CAS  Google Scholar 

  20. M. Gibis, Optimized HPLC method for analysis of polar and nonpolar heterocyclic amines in cooked meat products. J. AOAC Int. 92(3), 715–724 (2009)

    PubMed  CAS  Google Scholar 

  21. K. Skog, K. Augustsson, G. Steineck, M. Stenberg, M. Jägerstad, Polar and non-polar heterocyclic amines in cooked fish and meat products and their corresponding panresidues. Food Chem. Toxicol. 35(6), 555–565 (1997)

    PubMed  CAS  Google Scholar 

  22. C.H. Jo, Y.E. Sim, H.M. Lee, T. Ryeom, S.W. Myung, Heterocyclic amines in several types of cooked meat and chicken dishes which form part of the Korean diet. Food Sci. Technol. Res. 14(2), 169–175 (2008)

    CAS  Google Scholar 

  23. R.D. Klassen, D. Lewis, B.Y. Lau, N.P. Sen, Heterocyclic aromatic amines in cooked hamburgers and chicken obtained from local fast food outlets in the Ottawa region. Food Res. Int. 35(9), 837–847 (2002)

    CAS  Google Scholar 

  24. L. Warzecha, B. Janoszka, U. Błaszczyk, M. Stróżyk, D. Bodzek, C. Dobosz, Determination of heterocyclic aromatic amines (HAs) content in samples of household-prepared meat dishes. J. Chromatogr. B 802(1), 95–106 (2004)

    CAS  Google Scholar 

  25. M. Costa, O. Viegas, A. Melo, C. Petisca, O. Pinho, I.M.P.L. Ferreira, Heterocyclic aromatic amine formation in barbecued sardines (Sardina pilchardus) and Atlantic salmon (Salmo salar). J. Agric. Food Chem. 57(8), 3173–3179 (2009)

    PubMed  CAS  Google Scholar 

  26. E. Loeser, Peculiarities of mobile phases containing formic acid. Chromatographia 69(9–10), 807–811 (2009)

    CAS  Google Scholar 

  27. F. Bianchi, M. Careri, C. Corradini, L. Elviri, A. Mangia, I. Zagnoni, Investigation of the separation of heterocyclic aromatic amines by reversed phase ion-pair liquid chromatography coupled with tandem mass spectrometry: the role of ion pair reagents on LC–MS/MS sensitivity. J. Chromatogr. B 825(2), 193–200 (2005)

    CAS  Google Scholar 

  28. M.A.E. Johansson, M. Jaegerstad, Occurrence of mutagenic/carcinogenic heterocyclic amines in meat and fish products, including pan residues, prepared under domestic conditions. Carcinogenesis 15(8), 1511–1518 (1994)

    PubMed  CAS  Google Scholar 

  29. M. Gibis, M. Kruwinnus, J. Weiss, Impact of different pan-frying conditions on the formation of heterocyclic aromatic amines and sensory quality in fried bacon. Food Chem. 168, 383–389 (2015)

    PubMed  CAS  Google Scholar 

  30. M. Murkovic, Formation of heterocyclic aromatic amines in model systems. J. Chromatogr. B 802(1), 3–10 (2004)

    CAS  Google Scholar 

  31. G.A. Gross, A. Gruter, Quantitation of mutagenic/carcinogenic heterocyclic aromatic amines in food products. J. Chromatogr. A 592(1–2), 271–278 (1992)

    CAS  Google Scholar 

  32. C. Messner, M. Murkovic, Evaluation of a new model system for studying the formation of heterocyclic amines. J. Chromatogr. B 802(1), 19–26 (2004)

    CAS  Google Scholar 

  33. B.H. Chen, D.J. Yang, An improved analytical method for determination ofheterocyclic amines in chicken legs. Chromatographia 48(3–4), 223–230 (1998)

    CAS  Google Scholar 

  34. F. Toribio, E. Moyano, L. Puignou, M.T. Galceran, Ion-trap tandem mass spectrometry for the determination of heterocyclic amines in food. J. Chromatogr. A 948(1–2), 267–281 (2002)

    PubMed  CAS  Google Scholar 

  35. M.R. Khan, R. Busquets, F.J. Santos, L. Puignou, New method for the analysis of heterocyclic amines in meat extracts using pressurised liquid extraction and liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 1194(2), 155–160 (2008)

    PubMed  CAS  Google Scholar 

  36. J. Vichapong, S. Srijaranai, Y. Santaladchaiyakit, W. Kanchanamayoon, R. Burakham, Preconcentration and simultaneous determination of heterocyclic aromatic amines in grilled pork samples by ion-pair-based surfactant-assisted dispersive liquid-liquid microextraction and high-performance liquid chromatography. Food Anal. Methods 9, 1120–1127 (2016)

    Google Scholar 

  37. J. Vichapong, R. Burakham, S. Srijaranai, Air-agitated cloud-point extraction coupled with high-performance liquid chromatography for determination of heterocyclic aromatic amines in smoked sausages. Food Anal. Methods 10, 1645–1652 (2017)

    Google Scholar 

  38. K. Skog, M. Jagerstad, Effects of glucose on the formation of PhIP in a model system. Carcinogenesis 12(12), 2297–2300 (1991)

    PubMed  CAS  Google Scholar 

  39. A. Melo, O. Viegas, C. Petisca, O. Pinho, I. Ferreira, Effect of beer/red wine marinades on the formation of heterocyclic aromatic amines in pan-fried beef. J. Agric. Food Chem. 56(22), 10625–10632 (2008)

    PubMed  CAS  Google Scholar 

  40. F. Oz, M. Kaya, The inhibitory effect of red pepper on heterocyclic aromatic amines in fried beef Longissimus dorsi muscle. J. Food Proc. Preserv. 35, 806–812 (2011)

    CAS  Google Scholar 

  41. K.W. Cheng, Q. Wu, P.Z. Zong, X. Peng, J.E. Simon, F. Chen, M. Wang, Inhibitory effect of fruitextracts on the formation of heterocyclic amines. J. Agric. Food Chem. 55(25), 10359–10365 (2007)

    PubMed  CAS  Google Scholar 

  42. J.H. Weisburger, E. Veliath, E. Larios, B. Pittman, E. Zang, Y. Hara, Tea polyphenols inhibit the formation of mutagens during the cooking of meat. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 516(1–2), 19–22 (2002)

    CAS  Google Scholar 

  43. M. Gibis, Effect of oil marinades with garlic, onion, and lemon juice on the formation of heterocyclic aromatic amines in fried beef patties. J. Agric. Food Chem. 55(25), 10240–10247 (2007)

    PubMed  CAS  Google Scholar 

  44. G. Haskaraca, E. Demirok, N. Kolsarıc, F. Öz, N. Özsaraç, Effect of green tea extract and microwave pre-cooking on the formation of heterocyclic aromatic amines in fried chicken meat products. Food Res. Int. 63, 373–381 (2014)

    CAS  Google Scholar 

Download references

Acknowledgments

The research performed is part of a Fundamental Research Grant Scheme (Project no. 02–01-04-SF1436) supported by the Ministry of Science, Technology & Innovation (now the Ministry of Energy, Science, Technology, Environment and Climate Change), Malaysia. The authors also would like to thank the Ministry of Education (MOE) of Malaysia for the HICoE rendered to the Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra Malaysia (UPM), and the Faculty of Food Science and Technology, UPM for the facilities rendered.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jinap.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jinap, S., Jaafar, S.N., Hasnol, N.D.S. et al. Effect of a different mobile phase on LC–ESI–MS/MS performance for the identification and quantitation of polar and nonpolar heterocyclic amines in cooked chicken. Food Measure 14, 262–271 (2020). https://doi.org/10.1007/s11694-019-00288-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-019-00288-0

Keywords

Navigation