Skip to main content
Log in

Experimental determination of thermophysical properties by line heat pulse method

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The data available in literature concerning thermal conductivity and volumetric specific heat values of plant products show substantial discrepancies that arise not only from their varying moisture content or temperature at measurement. Hence, a quick, low cost field and lab method to determine these characteristics of plant material proves to be essential. Application of the line heat pulse method (LHPM) seems to be the optimal solution for the problem. The paper presents the study on the measurement accuracy results related to these properties of selected fruits and vegetables measured by means of a two-needle probe at the range of its positive and negative temperatures of foodstuff. It was found that the LHPM is applicable for quick measurement of thermal conductivity and volumetric specific heat over the positive temperatures. Agreement between the predicted and measured values is statistically significant. In the case of thermal conductivity at the phase transition, the measured values and those calculated differ significantly. Notably, the values of thermal conductivity and volumetric specific heat provided by the line heat pulse method and the values computed at the temperature range below the phase change agree to a great extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

bo, b1, b2 :

Constants to be fit in Eqs. (3–5)

c:

Specific heat, kJ⋅m−3⋅K−1

Ei:

Exponential integral

Φ:

Volume fraction

k:

Thermal conductivity, W⋅m− 1⋅K− 1

L:

Latent heat of freezing, kJ⋅kg− 1

M:

Molar mass, kg⋅kmol− 1

q:

Heat input, W⋅m− 1

Q:

Statistic experimental value

R:

Difference between the maximum and minimum value

Rg :

Universal gas constant (8.314⋅kJ⋅K− 1⋅kmol− 1)

T:

Temperature, oC

t:

Time, s

Tpw :

Freezing point of pure water (273.15 K)

W:

Water content

ω:

Mass fraction of bound water

x:

Mass fraction

X:

Mole fraction

y1 :

Suspect value

y2 :

Nearest to the suspect value

1:

Continuous phase

2:

Dispersed phases

b:

Bound water

c:

Calculated

carb:

Carbohydrates

cr:

Freezing point

f:

Freezing

h:

Heating

i:

Individual food components

m:

Measurement

me:

Maxwell-Eucken model

o:

Initial

prot:

Protein

s:

Solid

u:

Unfrozen

w:

Water

References

  1. Q. Pham, Food Freezing and Thawing Calculations (Springer, New York, 2014), pp. 5–38

    Google Scholar 

  2. A.K. Datta, J. Food Eng. (2007) https://doi.org/10.1016/j.jfoodeng.2006.05.012

    Article  Google Scholar 

  3. S. Sahin, S.G. Sumnu, Physical Properties of Foods (Springer, New York, 2006), pp. 107–155

    Book  Google Scholar 

  4. ASHRAE Handbook – Refrigeration, (ASHRAE, Atlanta, 2014)

    Google Scholar 

  5. Z. Gruda, J. Postolski, F. Freezing, (WN-T, Warszawa, 1999), pp. 73–90 [in Polish]

  6. D.W. Sun, Handbook of Frozen Food Processing and Packaging, 2nd edn. (CRC Press, Boca Raton, 2011), pp. 3–187

    Book  Google Scholar 

  7. M.A. Rao, S.S.H. Rizvi, A.K. Datta, Engineering Properties of Foods, 3rd edn. (CRC Press, Boca Raton, 2005), pp. 99–169

    Book  Google Scholar 

  8. I. Shinbayeva, A. Arkharov, A. Aldiyarov, M. Drobyshev, V. Zhubaniyazova, Kurnosov, J. Low Temp. Phys. (2017) https://doi.org/10.1007/s10909-017-1754-6

    Article  Google Scholar 

  9. L.O. Figura, A.A. Teixeira, Food physics: Physical properties - Measurement and applications (Springer, New York, 2007), pp. 257–331

    Google Scholar 

  10. W. Klinbun, P. Rattanadecho, Int. J. Food Prop. (2016) https://doi.org/10.1080/10942912.2016.1166129

    Article  Google Scholar 

  11. T. Renaud, P. Briery, J. Andrieu, M. Laurent, J. Food Eng. (1992) https://doi.org/10.1016/0260-8774(92)90027-4

    Article  Google Scholar 

  12. J. Ahmed, M.S. Rahman, in Food Properties Handbook, 2nd edn., ed. by M.S. By, Rahman (CRC Press, Boca Raton, 2009), pp. 545–580

    Google Scholar 

  13. KD2 Pro Thermal Properties Analyzer Operator’s Manual. (Decagon Devices Inc., 2016), http://manuals.decagon.com/Manuals/13351_KD2%20Pro_Web.pdf. Accessed 19 February 2017

  14. M.S. Rahman, in Handbook of Food Analysis, ed. By L.M.L. Nollet., F. Toldra, 3rd ed. (CRC Press Boca Raton, 2015), pp. 39–44

    Google Scholar 

  15. W. Yang, S. Sokhansanj, J. Tang, P. Winter, Biosyst. Eng. (2002) https://doi.org/10.1006/bioe.2002.006

    Article  Google Scholar 

  16. D.B. Rorabacher, Anal. Chem. (1991) https://doi.org/10.1021/ac00002a010

    Article  Google Scholar 

  17. AOAC Official Methods of Analysis of AOAC International, (AOAC Washington 2012)

    Google Scholar 

  18. Y. Choi, M.R. Okos, in Food Engineering and Processes Applications: Transport Phenomena, M. By, P. Le Maguer, Jelen (eds.), (Elsevier Amsterdam 1986), pp. 93–101

    Google Scholar 

  19. E.G. Murakami, M.R. Okos, in Food Properties and Computer-Aided Engineering od Food Processing Systems, ed. By R.P. Singh, A.G. Medina (Kluwer Academic Dordrecht, 1989), pp. 3–48

    Chapter  Google Scholar 

  20. J.K. Carson, Int. J. Refrig. (2006) https://doi.org/10.1016/j.ijrefrig.2006.03.016

    Article  Google Scholar 

  21. J. Wang, J.K. Carson, M.F. North, D.J. Cleland, Int. J. Heat Mass Tran. (2006) https://doi.org/10.1016/j.ijheatmasstransfer.2006.02.007

    Article  Google Scholar 

  22. F.L. Levy, Int. J. Refrig. (1981) https://doi.org/10.1016/0140-7007(81)90053-0

    Article  Google Scholar 

  23. C.S. Chen, J. Food Sci. (1985) https://doi.org/10.1111/j.1365-2621.1985.tb13034.x

    Article  Google Scholar 

  24. H.G. Schwartzberg, J. Food Sci. (1976) https://doi.org/10.1111/j.1365-2621.1976.tb01123.x

    Article  Google Scholar 

  25. H.G. Schwartzberg, R.P. Singh, A. Sarkar, in Heat Transfer Advances in Food Engineering ed, ed. by B.S. Yanniotis, B. Sunden (W.I.T. Press, South Hampton, 2007), pp. 61–100

    Google Scholar 

  26. D. Granato, V.M. de Araújo, B. Calado, Jarvis, Food Res. Int. 55, 137–149 (2014). https://doi.org/10.1016/j.foodres.2013.10.024

    Article  Google Scholar 

  27. J.P. Marques de Sa, Applied Statistics Using SPSS, Statistica and Matlab (Springer, Berlin Heidelberg, 2003), pp. 80–186

    Book  Google Scholar 

  28. A.J. Fontana, J. Varith, J. Ikediala, J. Reyes, B. Wacker, ASAE Paper No. 996063, (ASAE St. Joseph 1999)

    Google Scholar 

  29. R. Iribe-Salazar, J. Caro-Corrales, Ó Hernández-Calderón, J. Zazueta-Niebla, R. Gutiérrez-Dorado, M. Carrazco-Escalante, Y. Vázquez-López, J Food Sci. (2015) https://doi.org/10.1111/1750-3841.13109

    Article  PubMed  Google Scholar 

  30. Z. Pałacha, G. Świstak, Post. Tech. Przet. Spoż. 1, 9–14 (2015) [in Polish]

    Google Scholar 

  31. H. Lisowa, M. Wujec, T. Lis, Int. Agrophys. 16, 43–52 (2002)

    Google Scholar 

  32. V. Mykhailyk, N. Lebovka, J. Food Eng. (2014) https://doi.org/10.1016/j.jfoodeng.2013.09.015

    Article  Google Scholar 

  33. D. Witrowa-Rajchert, Acta Agrophys 2, 867–878 (2003) [in Polish]

    Google Scholar 

  34. M.S. Rahman, X.D. Chen, C.O. Perera, J. Food Eng. (1997) https://doi.org/10.1016/S0260-8774(96)00060-X

    Article  Google Scholar 

  35. H.N. Lazarides, P. Fito, A. Chiralt, V. Gekas, A. Lenart, in Processing Foods: Quality Optimization and Process Assessment, ed. by F.A.R. By, J.C. Oliveira, Oliveira (CRC Press, Boca Raton, 1999), pp. 176–196

    Google Scholar 

  36. J.K. Carson, J. Wang, M.F. North, D.J. Cleland, J. Food Eng. (2016) https://doi.org/10.1016/j.jfoodeng.2015.12.006

    Article  Google Scholar 

  37. R. Hunt, B. Ewing, Ghanbarian, Percolation Theory for Flow in Porous Media, 3rd edn. (Springer, Heidelberg, 2014), pp. 234–242

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariusz Góral.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozłowicz, K., Góral, D., Kluza, F. et al. Experimental determination of thermophysical properties by line heat pulse method. Food Measure 12, 2524–2534 (2018). https://doi.org/10.1007/s11694-018-9869-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-018-9869-2

Keywords

Navigation