Skip to main content
Log in

Influence of anti-browning agent pretreatment on drying kinetics, enzymes inactivation and other qualities of dried banana (Musa ssp.) under relative humidity-convective air dryer

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The influences anti-browning agents (citric and ascorbic acids) and relative humidity (RH) on dried banana slices were investigated. Three concentrations (0.5, 1.0 and 1.5% w/v) of each citric and ascorbic acids pretreated banana slices (5 mm) were dried under 75 °C, 10, 30 and 50% RH and 2.0 m/s air velocity in RH-convective hot air dryer. The relationship between the RH with anti-browning agents on drying kinetics, enzymes inactivation, browning index as well as other qualities of banana slices were discussed. Results showed that RH of 10 and 30% achieved 20 and 10% drying time reduction respectively when compared with untreated sample. Contrary, 50% RH increased the drying time by 10%. Results also showed that the resistivity of the enzymes studied follows the order: Peroxidase > Polyphenol oxidase > Ascorbic acid oxidase. Enzymatic browning index was observed to decrease when anti-browning agent and RH increased and decreased respectively. Lower RH (10 and 30%) was in favor of non-enzymatic reduction but 50% RH produced a contrasting result. For color, a significant (p < 0.05) decrease of L* value and an increase in a* and b* value were observed under various RH and anti-browning agents treatments for both citric and ascorbic acids. Both anti-browning agents were effective in color retention as a result of lower acidification effect on dried banana. Fewer micropores formed in higher RH indicated a more solid surface in the micrograph compare with others and therefore caused lesser damage to the tissue of the dried banana. Person’s coefficient of correlation revealed a direct relation between enzymatic browning index and residual enzymes studied. Also, browning index obtained by color parameters correlated highly with enzymatic browning index than non-enzymatic browning index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

RH:

Relative humidity

PPO:

Polyphenol oxidase

POD:

Peroxidase

AAO:

Ascorbic acid oxidase

HUMID:

Relative humidity at 50% only

r:

Person’s coefficient of correlation

MR:

Moisture ratio

M:

Moisture content

\({M_t}\) :

Moisture content at given time,

\({M_0}\) :

Initial moisture content

DR:

Drying rate

Deff:

Moisture effective diffusion

REA:

Residual enzymes activity

°h:

Hue angle

∆E:

Color difference

BI:

Browning index

EBI:

Enzymatic browning index

NBI:

Non-enzymatic browning index

TPA:

Texture profile analysis

SEM:

Scanning electron microscopy

References

  1. E. Korbel, A. Servent, C. Billaud, P. Brat, Dry. Technol. 31, 1675 (2013)

    Article  CAS  Google Scholar 

  2. H.-W. Xiao, X.D. Yao, H. Lin, W.X. Yang, J.S. Meng, Z.J. Gao, J. Food Process Eng. 35, 370 (2012)

    Article  Google Scholar 

  3. Y. Xu, L. Zhang, Y. Bailina, Z. Ge, T. Ding, X. Ye, D. Liu, J. Food Eng. 126, 72 (2014)

    Article  CAS  Google Scholar 

  4. C. Severini, A. Baiano, T. De Pilli, B.F. Carbone, A. Derossi, J. Food Eng. 68, 289 (2005)

    Article  Google Scholar 

  5. O. Cyprian, M. Nguyen, K. Sveinsdottir, T. Tomasson, G. Thorkelsson, S. Arason, Drying Technol. 35, 478 (2017)

    Article  CAS  Google Scholar 

  6. K. Waliszewski, R. Garcia, M. Ramirez, M. Garcia, Dry. Technol. 18, 1327 (2000)

    Article  CAS  Google Scholar 

  7. M.H. Ahmad-Qasem, J. Nijsse, J.V. García-Pérez, S. Khalloufi, Drying Technol. 35, 1204 (2017)

    Article  CAS  Google Scholar 

  8. H.-W. Xiao, J.-W. Bai, D.-W. Sun, Z.-J. Gao, J. Food Eng. 132, 39 (2014)

    Article  CAS  Google Scholar 

  9. G.P. Rizzi, Food Chem. 217, 205 (2017)

    Article  CAS  Google Scholar 

  10. I. Ioannou, ESJ 9, 30 (2013)

    Google Scholar 

  11. Z. Zhang, L. Niu, D. Li, C. Liu, R. Ma, J. Song, J. Zhao, Ultrason. Sonochem. 36, 50–58 (2017)

    Article  CAS  Google Scholar 

  12. S. Wegener, M. Kaufmann, L.W. Kroh, Food Chem. 232, 450 (2017)

    Article  CAS  Google Scholar 

  13. Z. Gao, J. Zheng, L. Chen, Ultrason. Sonochem. 34, 626 (2017)

    Article  CAS  Google Scholar 

  14. F. Lu, I. Bruheim, B. Haugsgjerd, C. Jacobsen, Food Chem. 157, 398 (2014)

    Article  CAS  Google Scholar 

  15. P. Gupta, J. Ahmed, U. Shivhare, G. Raghavan, Dry. Technol. 20, 1975 (2002)

    Article  Google Scholar 

  16. M. Van Boekel, Mol. Nutr. Food Res. 45, 150 (2001)

    Google Scholar 

  17. N. Acevedo, C. Schebor, M.P. Buera, J. Food Eng. 77, 1108 (2006)

    Article  CAS  Google Scholar 

  18. F.N. De Almeida, Effects of the Maillard reactions on chemical composition and amino acid digestibility of feed ingredients and on pig growth performance, University of Illinois at Urbana-Champaign, 2013

  19. C. Raikham, S. Prachayawarakorn, A. Nathakaranakule, S. Soponronnarit, Dry. Technol. 33, 915 (2015)

    Article  Google Scholar 

  20. E. Palou, A. López-Malo, G. Barbosa-Cánovas, J. Welti-Chanes, B. Swanson, J. Food Sci. 64, 42 (1999)

    Article  CAS  Google Scholar 

  21. R. Dandamrongrak, G. Young, R. Mason, J. Food Eng. 55, 139 (2002)

    Article  Google Scholar 

  22. S.J. Bora, J. Handique, N. Sit, Ultrason. Sonochem. 37, 445 (2017)

    Article  CAS  Google Scholar 

  23. P. Ding, Y.S. Ling, Int. Food Res. J. 21, 1667 (2014)

    CAS  Google Scholar 

  24. I. Rezapour, T. Jasemizad, M. Ayatollahi, M. Zamani, S. Aghaei, A. Jebali, Int. J. Environ. Sci. Technol. 13, 1109 (2016)

    Article  CAS  Google Scholar 

  25. Association of Official Analytical Chemists (AOAC), Official Methods of Analysis, 15th edn. (Arlington, VA, 1990)

  26. S. De la Fuente-Blanco, E.R.-F. De Sarabia, V. Acosta-Aparicio, A. Blanco-Blanco, J. Gallego-Juárez, Ultrasonics 44, e523 (2006)

    Article  Google Scholar 

  27. I. Doymaz, S. Karasu, M. Baslar, J. Food Meas. Charact. 10, 283 (2016)

    Article  Google Scholar 

  28. J. Crank, The Mathematics of Diffusion (Oxford University Press, Oxford, 1979)

    Google Scholar 

  29. A. Lopez, A. Iguaz, A. Esnoz, P. Virseda, Dry. Technol. 18, 995 (2000)

    Article  CAS  Google Scholar 

  30. Y.-M. Jiang, Food Chem. 66, 75 (1999)

    Article  CAS  Google Scholar 

  31. A.W. Munyaka, E.E. Makule, I. Oey, A. Van Loey, M. Hendrickx, J. Food Sci. 75, C336 (2010)

    Article  CAS  Google Scholar 

  32. L.A. Ramallo, R.H. Mascheroni, Food Bioprod. Process. 90, 275 (2012)

    Article  CAS  Google Scholar 

  33. S. Cernîşev, J. Food Eng. 96, 114 (2010)

    Article  Google Scholar 

  34. A. Ruangchakpet, S. Tanaboon, Kasetsart J (Nat Sci). 41, 331 (2007)

    Google Scholar 

  35. H.-Y. Ju, Q. Zhang, A. Mujumdar, X.-M. Fang, H.-W. Xiao, Z.-J. Gao, Int. J. Food Eng. 12, 783 (2016)

    Article  Google Scholar 

  36. G.D. Saravacos, A.E. Kostaropoulos, Handbook of Food Processing Equipment (Springer Science & Business Media, Cham, 2002)

    Book  Google Scholar 

  37. O. Hacıhafızoğlu, A. Cihan, K. Kahveci, Food Bioprod. Process. 86, 268 (2008)

    Article  Google Scholar 

  38. I. Doymaz, J. Food Process. Preserv. 35, 458 (2011)

    Article  Google Scholar 

  39. S. Mghazli, M. Ouhammou, N. Hidar, L. Lahnine, A. Idlimam, M. Mahrouz, Renew. Energy 108, 303 (2017)

    Article  CAS  Google Scholar 

  40. S. Biran, A.D. Jensen, S. Kiil, P. Bach, O. Simonsen, J. Biotechnol. 141, 73 (2009)

    Article  CAS  Google Scholar 

  41. P. Udomkun, M. Nagle, B. Mahayothee, D. Nohr, A. Koza, J. Müller, LWT Food Sci. Technol. 60, 914 (2015)

    Article  CAS  Google Scholar 

  42. U. Schweiggert, A. Schieber, R. Carle, Innov. Food Sci. Emerg. 6, 403 (2005)

    Article  CAS  Google Scholar 

  43. X.-F. Cheng, M. Zhang, B. Adhikari, Ultrason. Sonochem. 20, 674 (2013)

    Article  CAS  Google Scholar 

  44. K. Matsui, L. Granado, P. De Oliveira, C. Tadini, LWT Food Sci. Technol. 40, 852 (2007)

    Article  CAS  Google Scholar 

  45. A.M. Rayan, A.A. Gab-Alla, A.A. Shatta, Z.A. El-Shamei, Eur. Food Res. Technol. 232, 319 (2011)

    Article  CAS  Google Scholar 

  46. N.S. Terefe, Y.H. Yang, K. Knoerzer, R. Buckow, C. Versteeg, Innov. Food Sci. Emerg. 11, 52 (2010)

    Article  CAS  Google Scholar 

  47. J. Wang, X.-M. Fang, A. Mujumdar, J.-Y. Qian, Q. Zhang, X.-H. Yang, Y.-H. Liu, Z.-J. Gao, H.-W. Xiao, Food Chem. 220, 145 (2017)

    Article  CAS  Google Scholar 

  48. F.N. Engmann, Y. Ma, H. Zhang, L. Yu, N. Deng, J. Sci. Food Agric. 94, 2345 (2014)

    Article  CAS  Google Scholar 

  49. M.A. Homaida, S. Yan, H. Yang, LWT Food Sci. Technol. 77, 8 (2017)

    Article  CAS  Google Scholar 

  50. A. Altunkaya, V. Gökmen, Food Chem. 107, 1173 (2008)

    Article  CAS  Google Scholar 

  51. H.M. Ali, A.M. El-Gizawy, R.E. El-Bassiouny, M.A. Saleh, J. Food Sci. Technol. 52, 3651 (2015)

    Article  CAS  Google Scholar 

  52. L. Manzocco, S. Calligaris, D. Mastrocola, M.C. Nicoli, C.R. Lerici, Trends Food Sci. Technol. 11, 340 (2000)

    Article  CAS  Google Scholar 

  53. M. Namiki, Adv. Food Res. 32, 115 (1988)

    Article  CAS  Google Scholar 

  54. G.M. Sapers, K.B. Hicks, Inhibition of Enzymatic Browning in Fruits and Vegetables (ACS Publications, Washington, DC, 1989)

    Book  Google Scholar 

  55. J.A. Hernández-Herrero, M.J. Frutos, Food Chem. 173, 495 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support provided by the National Natural Science Foundation of China (21676125), the National Key Research and Development Program of China (2016YFD0400705-04, 2017YFD0400903-01), the National High-tech Research and Development Program of China (2013AA102203-02), the Special Fund of Jiangsu Province for the Transformation of Scientific and Technological Achievements (BA2016169), the Policy Guidance Program (Research Cooperation) of Jiangsu (BY2016072-03) and the Social Development Program (General Project) of Jiangsu (BE2016779).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cunshan Zhou or Haile Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarpong, F., Yu, X., Zhou, C. et al. Influence of anti-browning agent pretreatment on drying kinetics, enzymes inactivation and other qualities of dried banana (Musa ssp.) under relative humidity-convective air dryer. Food Measure 12, 1229–1241 (2018). https://doi.org/10.1007/s11694-018-9737-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-018-9737-0

Keywords

Navigation