Skip to main content

Advertisement

Log in

Simultaneous SIA analysis of pH and total acidity measurements in milk

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The development of a sequential injection analysis method for automatic determination of pH and total acidity in milk is proposed. For this purpose, firstly, three micro-sized composite pH electrodes were prepared and tested. A microliter dead volume flow-cell was designed for composite pH and reference electrodes. Potentiometric performance characteristics of the pH electrodes were examined by a computer-controlled potentiometric system in both stagnant and flowing environments. Three different micro-columns with the best working pH electrode were applied on the flowing stream line in the sequential injection analysis system to fulfill the titration efficiency for total acidity. The sequential injection analysis system was optimized for two parameters (pH and total acidity) by testing all the variables. Mobile phase concentration, volume and flow-rate together with sample concentration, volume and sample flow-rate were fixed for the best stable values by arranging the experimental programming steps. Total acidity of ten different milk samples was analyzed using the sequential injection analysis system developed. The same samples were also titrated in the classical way using phenolphthalein indicator for the comparison. The results of both methods analyzed statistically by SPSS software were found to be compatible with each other. pH analysis of ten different milk samples carried out by using the sequential injection analysis system were also measured with a glass electrode. The results obtained by both methods analyzed by SPSS were also found to be compatible with each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D.Y. Güdemez, A research on light (diet) milk and dairy products, MSc Thesis, Graduate School of Natural and Applied Sciences Namık Kemal University (2007)

  2. S. Dhakal, K. Chao, J. Qin, M. Kim, D. Chan, Raman spectral ımaging for quantitative contaminant evaluation in skim milk powder. Food Measure. 10, 374–386 (2016)

    Article  Google Scholar 

  3. K. Maijala, Cow milk and human development and well-being. Livest. Prod. Sci. 65, pp. 1–18 (2000)

    Article  Google Scholar 

  4. A.M.S. Meshref, W.A. Moselhy, Heavy metals and trace elements levels in milk and milk products. Food Measure. 8, 381–388 (2014)

    Article  Google Scholar 

  5. P.F. Fox, P.L.H. McWeeney, Advanced Dairy Chemistry, 3rd edn. (Springer Verlag, New York, 2003), pp. 1–40

    Google Scholar 

  6. Y.S. Gülbaş, UHT the effect of aseptic homogenization and storage temperature on gelation problem at different pressures in milk production and its investigation with artificial neural networks”, PhD. Thesis, Graduate School of Natural and Applied Sciences, Hacettepe University, 2007

  7. M. Beykaya, Determination of physical, chemical and microbiological characteristics of milks from some dairy administrations in sivas province, Msc Thesis, Graduate School of Natural and Applied Sciences, Gaziosmanpaşa University, 2010

  8. M. Metin, Milk Technology, Composition and Processing, 6th edn. (Ege Universty, İzmir, 2005), pp. 1–50

    Google Scholar 

  9. M. Üçüncü, A to Z Cheese Technology, 1st edn. (Meta, İzmir, 2008), pp. 45–67

    Google Scholar 

  10. V Bulletin, milk conservation techniques (Jelsoft Enterprises publishing web site, 2000), http://www.gidacilar.net/sutun-muhafaza-teknikleri-ve-analizleri/sut-kabulünde-kalite-kontrolu-630.html, Accessed 3 Mar 2016

  11. T.C. Official Newspaper, Turkish food codex raw milk and heat treated drinking milk communique, (23964), pp. 1–13 (2000)

  12. P. Benjakul, C. Chuenarrom, Association of dental enamel loss with the ph and titratable acidity of beverages. J. Dent. Sci. 6, 129–133 (2011)

    Article  Google Scholar 

  13. A.M. Cairns, M. Watson, S.L. Creanor, et.al., The pH and titratable acidity of a range of diluting drinks and their potential effect on dental. J. Dens. 30, 313–317 (2002)

    Article  CAS  Google Scholar 

  14. W.E. Morf, The Principles of Ion-Selective Electrodes and of Membrane Transport, 1nd edn. (Elsevier Scientific, Budapest,1981), pp. 165–425

    Google Scholar 

  15. R. Kellner, J.M. Mermet, M. Otto, et.al., Analytical Chemistry, 2nd edn. (Wiley, Weinheim, 2004), pp. 201–225

    Google Scholar 

  16. H.,F. Ayyıldız, Development of oil analysis methods by automated flow ınjection systems, PhD Thesis, Graduate School of Natural and Applied Sciences, Selçuk University, 2010

  17. S.D. Kolev, I.D. Mckelvie, Comprehensive Analytical Chemistry-Advances in Flow Injection Analysis and Related Techniques”, 1st edn. (Elsevier, Budapest, 2008), pp. 3–18

    Google Scholar 

  18. M. Kuşçu, Removal and pretreatment of lead from water samples by flow-ınjection analysis, PhD Thesis, Graduate School of Natural and Applied Sciences, Trakya University, 2008

  19. J.F. Staden, R.I. Stefan, Chemical speciation by sequential injection analysis: an overview. Sci. Direct 64, 1109–1113 (2004)

    Google Scholar 

  20. F. Çoldur, “Design and Applications of Potentiometric Multiple Microscope System”, PhD Thesis, Graduate School of Natural and Applied Sciences, Ondokuz Mayıs University, 2010

  21. R. Pe´rez-Olmos, J.C. Soto, N. Za´rate et.al., Application of Sequential Injection Analysis (SIA) To Food Analysis. Food. Chem. 90, 471–490 (2005)

    Article  Google Scholar 

  22. A. Economou, Sequential-injection analysis (SIA): a useful tool for on-line sample-handling and pre-treatment”. Trends Anal. Chem. 24, 416–425 (2005)

    Article  CAS  Google Scholar 

  23. P.H. Gonc., A.D. Diniz, L.F. Almeida, et.al., Flow-batch analysis. Trends Anal. Chem. 35, 39–49 (2012)

    Article  Google Scholar 

  24. J. Wang, H.E. Hansen, Sequential ınjection lab-on-valve: the third generation of flow ınjection analysis. Trends Anal. Chem. 22, 225–231 (2003)

    Article  Google Scholar 

  25. I. Isildak, C. Yigit, H. Bati, Construction and response characteristics of a sulfite/hydrogensulfite-selective all-solid-state contact electrode based on the 4-methylpiperidinedithiocarbamate complex of mercury(II). Analyst 121(12), 1873–1876 (1996)

    Article  Google Scholar 

  26. I. Isildak, All solid-state contact lead(II) ion-selective PVC membrane electrode using dimethylene bis(4-methylpiperidinedithiocarbamate) neutral ionophore. Turk. J. Chem. 24(4), 389–394 (2000)

    CAS  Google Scholar 

  27. M.F.S Teixeira, L.A. Ramos, E.A. Neves, et.al., A solid Fe2O3 based carbon-epoxy electrode for potentiometric measurements of pH”. Portugaliae Electrochim. Acta 20, 139–149 (2002)

    Article  CAS  Google Scholar 

  28. G. Gostkiewicz, M. Sophocleous., J.K. Atkinsona. et al., Performance of miniaturised thick-film solid state pH sensors. Sens. Actuators 202, 2–7 (2013)

    Article  Google Scholar 

  29. M. Hosseini., R.B. Heydari, M. Alimoradi, A novel pH optical sensor using methyl orange based on triacetylcellulose membranes as support. Spectrochim. Acta 128, 864–867 (2014)

    Article  CAS  Google Scholar 

  30. H. Kahlert, R. Pçrksen, I. Isildak et al., Application of a new ph-sensitive electrode as a detector in flow injection potentiometry. Electroanalysis 17, 1085–1090 (2005)

    Article  CAS  Google Scholar 

  31. P.J. Fletcher, J.F. Staden, Determination of carbonate and hydrogencarbonate by titration using sequential injection analysis. Anal. Chim. Acta 485, 187–194 (2003)

    Article  CAS  Google Scholar 

  32. J.A. Vieiraa., I.M. Raimundo, B.F. Reisc et al., Monosegemented flow potentiometric titration for the determination of chloride in milk and wine. J. Braz. Chem. Soc. 14(2), 259–264 (2003)

    Article  Google Scholar 

  33. A.R. Berkem, Electrochemistry, 1st edn. (İstanbul University, İstanbul,1993), pp. 373–421

    Google Scholar 

  34. E. Eymen, SPSS 15.0 Data Analysis Methods, 1st edn. (İstatistik Merkezi, Ankara, (2009), pp. 50–83

    Google Scholar 

  35. N. Lenghor, J. Jakmunee, M. Vilen, etal., Sequential ınjection redox or acid-base titration for determination of ascorbic acid or acetic acid. Talanta 58, 1139–1144 (2002)

    Article  CAS  Google Scholar 

  36. J.E. Silva, M.F. Pimentel, V.L. Silva et al., Simultaneous determination of pH, chloride and nickel in electroplating baths using sequential injection analysis. Anal. Chim. Acta 506, 197–202 (2004)

    Article  Google Scholar 

  37. G. Theodoridis, C.K. Zacharis, P.D. Tzanavaras, et.al., Automated sample preparation based on the sequential injection principle solid-phase extraction on a molecularly imprinted polymer coupled on-line to high-performance liquid chromatography. J. Chromatogr. 1030, 69–76 (2004)

    Article  CAS  Google Scholar 

  38. A.N. Anthemidis, G.A. Zachariadis, J.A. Stratis, Determination of arsenic(ııı) and total ınorganic arsenic in water samples using an on-line sequential ınsertion system and hydride generation atomic absorption spectrometry. Anal. Chim. Acta 547, 237–242 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of TUBITAK 2211- PhD Scholarship Program (Application Number: 1649B031306054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alime Gul Gones.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isildak, I., Gones, A.G. Simultaneous SIA analysis of pH and total acidity measurements in milk. Food Measure 12, 403–411 (2018). https://doi.org/10.1007/s11694-017-9653-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-017-9653-8

Keywords

Navigation