Skip to main content
Log in

Freezing-induced proton dynamics in tofu evaluated by low-field nuclear magnetic resonance

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The main purpose of the study was to understand and interpret the effects of freezing times on the proton dynamics and chrominance of tofu. Low-field nuclear magnetic resonance (LF-NMR) and magnetic resonance imaging (MRI) were used to monitor real-time changes in microstructure and water distribution at different freezing times. The T 2 relaxation parameters included the relative intensity (A 2i) and the population of T 2i component (M 2i). Three proton populations focusing on approximately 0.93–4.72, 25–49, and 402–505 ms were identified as T 2b, T 21, and T 22, respectively. The generated ice crystals damaged the hydration layer of the soybean protein and T 2b increased over the 2 h. The side chains of the soybean protein then began to unite owing to the protein’s reduced affinity for water, making the protons of the hydrophilic groups exchangeable, and resulting in decreased mobility of the T 2b fraction. The appearance of exchangeable hydrophilic group protons caused an increase in A 2b from 2 to 6 h. The subsequent increases in A 2b and M 2b 6 h later were due to access to the unfrozen free water. The water molecules (T 21 fraction) changed into ice crystals, reducing A 21 and M 21. The disappearance of the T 22 fraction peak 6 h later was attributed to residual unfrozen water molecules, with the minor component turning into ice with a fast relaxation time. The MRI results showed that the outline of the sample was blurred at 2 h and could not be detected 6 h later. Significant correlations were further detected between T 2 relaxation parameters and color parameters. LF-NMR has great potential as a reliable tool for the study of tofu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. V.A. Obatolu, Eur. Food. Res. Technol. 226, 467–472 (2008)

    Article  CAS  Google Scholar 

  2. M. Fuchigami, A. Teramoto, N. Ogawa, J. Food Sci. 63, 1054–1057 (1998)

    Article  CAS  Google Scholar 

  3. Schulson E. M, Duval P, Schulson E. M, Duval. P. Physical Properties: Elasticity, Friction and diffusivity creep and Fracture of Ice (Cambridge University Press, New York, 2009)

    Book  Google Scholar 

  4. S.H. Chung, W.S. Choi, H.S. Son, C.H. Lee, Korean J. Food. Sci. Technol. 31, 957–963 (1999)

    Google Scholar 

  5. M.E. Camire, M.P. Dougherty, Y.-H. Teh, J. Food Sci. 71, S119–S123 (2006)

    Article  CAS  Google Scholar 

  6. M. Fuchigami, N. Ogawa, A. Teramoto, Innov. Food Sci. Emerg. 3, 139–147 (2002)

    Article  CAS  Google Scholar 

  7. E.J. Noh, S.Y. Park, J.I. Pak, S.T. Hong, S.E. Yun, Food Chem. 91, 715–721 (2005)

    Article  CAS  Google Scholar 

  8. G.R. Trout, Meat Sci. 23, 235–252 (1988)

    Article  CAS  Google Scholar 

  9. C.-I. Cheigh, H.-W. Wee, M.-S. Chung, Food Res. Int. 44, 1102–1107 (2011)

    Article  Google Scholar 

  10. H.C. Bertram, H.J. Andersen, A.H. Karlsson, Meat Sci. 57, 125–132 (2001)

    Article  CAS  Google Scholar 

  11. T. Li, X. Rui, K. Wang, M. Jiang, X. Chen, W. Li, M. Dong, Innov. Food Sci. Emerg. 30, 61–68 (2015)

    Article  CAS  Google Scholar 

  12. T. Li, X. Rui, W. Li, X. Chen, M. Jiang, M. Dong, J. Agric. Food Chem. 62, 8594–8601 (2014)

    Article  CAS  Google Scholar 

  13. A. Luyts, E. Wilderjans, I. Van Haesendonck, K. Brijs, C.M. Courtin, J.A. Delcour, Food Chem. 141, 3960–3966 (2013)

    Article  CAS  Google Scholar 

  14. L. Manzocco, S. Calligaris, S. Da Pieve, S. Marzona, M.C. Nicoli, Food Res. Int. 49, 778–782 (2012)

    Article  CAS  Google Scholar 

  15. M. Koizumi, S. Naito, T. Haishi, S. Utsuzawa, N. Ishida, H. Kano, Magn. Reson. Imaging. 24, 1111–1119 (2006)

    Article  Google Scholar 

  16. K.L. McCarthy, M.J. McCarthy, V. Rakesh, A.K. Datta, J. Food Sci. 75, E66–E72 (2010)

    Article  CAS  Google Scholar 

  17. L. Zhang, D.M. Barrett, M.J. McCarthy, J. Food Sci. 78, E50–E55 (2013)

    Article  CAS  Google Scholar 

  18. G. Adiletta, G. Iannone, P. Russo, G. Patimo, S. De Pasquale, M. Di Matteo, Int. J. Food Sci. Technol. 49, 2602–2609 (2014)

    Article  CAS  Google Scholar 

  19. M. Musse, S. Challois, D. Huc, S. Quellec, F. Mariette, J. Food Eng. 121, 152–158 (2014)

    Article  Google Scholar 

  20. M.E. Miquel, L.D. Hall, Food Res. Int. 35, 993–998 (2002)

    Article  CAS  Google Scholar 

  21. I. Sanchezalonso, I. Martinez, J. Sanchezvalencia, M. Careche, Food Chem. 135, 1626 (2012)

    Article  CAS  Google Scholar 

  22. G. Pasini, F. Greco, M. Cremonini, A. Brandolini, R. Consonni, M. Gussoni, J. Agric. Food Chem. 63, 5072 (2015)

    Article  CAS  Google Scholar 

  23. S. Nakano, J. Kousaka, K. Fujii, K. Yorozuya, M. Yoshida, Y. Mouri, M. Akizuki, R. Tetsuka, T. Ando, T. Fukutomi, Y. Oshima, J. Kimura, T. Ishiguchi, O. Arai, Breast Cancer Res. Treat. 134, 1179–1188 (2012)

    Article  Google Scholar 

  24. G. Guthausen. TrAC Trends in Analytical Chemistry

  25. S. Geng, H. Wang, X. Wang, X. Ma, S. Xiao, J. Wang, M. Tan, Anal. Methods. 7, 2413–2419 (2015)

    Article  CAS  Google Scholar 

  26. F. Mariette, Curr. Opin. Colloid Interface Sci. 14, 203–211 (2009)

    Article  CAS  Google Scholar 

  27. J. Liu, K. Zhu, T. Ye, S. Wan, Y. Wang, D. Wang, B. Li, C. Wang, Food Res. Int. 51, 437–443 (2013)

    Article  CAS  Google Scholar 

  28. C. Mcdonnell, P. Allen, E. Duggan, J.M. Arimi, E. Casey, G. Duane, J.G. Lyng, Meat Sci. 95, 51–58 (2013)

    Article  CAS  Google Scholar 

  29. T. Lucas, F. Mariette, S. Dominiawsyk, D.L. Ray, Food Chem. 84, 77–89 (2004)

    Article  CAS  Google Scholar 

  30. H.C. Bertram, S. Dønstrup, A.H. Karlsson, H.J. Andersen, Meat Sci. 60, 279–285 (2002)

    Article  Google Scholar 

  31. H.C. Bertram, H.J. Andersen, A.H. Karlsson, Meat Sci. 57, 125 (2001)

    Article  CAS  Google Scholar 

  32. B.P. Hills, S.F. Takacs, P.S. Belton, Food Chem. 37, 95–111 (1990)

    Article  CAS  Google Scholar 

  33. K. Hashizume, K. Kakiuchi, E. Koyama, T. Watanabe, Agric. Biol. Chem. 35, 449–459 (1971)

  34. S. Benjakul, W. Visessanguan, C. Thongkaew, M. Tanaka, Food Res. Int. 36, 787–795 (2003)

    Article  CAS  Google Scholar 

  35. M.I. Marques, J.M. Borreguero, H.E. Stanley, N.V. Dokholyan, Phys. Rev. Lett. 91, 138103 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the precious comments and careful corrections made by the anonymous reviewers. The authors would also like to acknowledge the Scientific Research Foundation for the Doctors (61020712).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Li or Mingqian Tan.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Shi, W., Cheng, S. et al. Freezing-induced proton dynamics in tofu evaluated by low-field nuclear magnetic resonance. Food Measure 11, 1003–1010 (2017). https://doi.org/10.1007/s11694-017-9475-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-017-9475-8

Keywords

Navigation