Skip to main content
Log in

Histamine levels in Indian fish via enzymatic, TLC and HPLC methods during storage

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Histamine is a potentially hazardous compound and one of the major concerns in food chemistry. In the present study the histamine levels of 20 muscle sample for each milk fish (Chanos chanos) and Indian whiting (Sillago indica) were analyzed with 6, 12, 18 and 24 h intervals and compared by enzymatic assay (EA), thin layer chromatography (TLC) and high performance liquid chromatography (HPLC) methods. During storage, histamine levels were ranged between 16.50 ± 1.63 and 48.13 ± 1.24 mg/100 g with a linear regression r2 = 0.855; P < 0.05 for the milk fish as determined by the EA method. Whereas, histamine levels in Indian whiting was 19.86 ± 1.64–43.84 ± 2.44 mg/100 g with a linear regression r2 = 0.997; P < 0.01. In the TLC method, histamine were observed at lower levels compared to the EA and HPLC and showing 4.77 ± 0.13–7.72 ± 0.16 and 6.81 ± 0.11–7.53 ± 0.15 mg/100 g in milk fish and Indian whiting muscle, respectively. The linear regression r2 = 0.835; P < 0.05 was noted in both fishes. The HPLC analysis also confirmed that the histamine levels were ranged from 18.18 ± 1.03 to 28.69 ± 1.14 mg/100 g in milk fish with a linear regression r2 = 0.903; P < 0.01. For Indian whiting fish, histamine was ranged from 17.28 ± 1.67 to 23.97 ± 1.27 mg/100 g with a linear regression r2 = 0.910; P < 0.01. Therefore, monitoring of histamine is a critical task in the seafood industry. Our result showed that the TLC methods can be used to monitor the histamine content in routine analysis and enzymatic analysis can be used to quantify the levels of histamine in the seafood industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A.R. Shalaby, Significance of biogenic amines in food safety and human health. J. Food Res. Int. 29(2), 675–690 (1996)

    Article  CAS  Google Scholar 

  2. D.D. Rawlesl, G.J. Flick, R.E. Martin, Biogenic amines in fish and shellfish. Adv. J. Food Nutr. Res. 39, 329–364 (1996)

    Article  Google Scholar 

  3. M. Krizek, F. Vacha, L. Vorlova, J. Lukasova, S. Cupakova, Biogenic amines in vacuum packed and non-vacuum packed flesh of carp (Cyprinus carpio) stored at different temperatures. J. Food Chem. 88, 185–191 (2004)

    Article  CAS  Google Scholar 

  4. P. Viciano, G. Campana, L. Annunziata, A. Vergara, A. Ianieri, Effect of storage temperature on histamine formation in Sardina pilchardus and Engraulis encrasicolus after catch. J. Food Biochem. 31, 577–588 (2007)

    Article  Google Scholar 

  5. R. Jeyashakila, G. Jeyasekaran, S.A.P. Vyla, R.S. Kumar, Effect of delayed processing on changes in histamine and other quality characteristics of 3 commercially canned fishes. J. Food Sci. 70, 24–29 (2005)

    Article  Google Scholar 

  6. C. Ruiz-Capillas, A. Moral, Correlation between biochemical and sensory quality indices in hake stored in ice. Food Res. Inter. 34, 441–447 (2001)

    Article  CAS  Google Scholar 

  7. Y.H. Tsai, S.C. Chang, H.F. Kung, C.I. Wei, D.F. Hwang, Histamine production by Enterobacter aerogenes in sail fish and milkfish at various storage temperature. J. Food Prot. 68, 1690–1695 (2005)

    Article  CAS  Google Scholar 

  8. M.Z. Zaman, F. Abu Bakar, J. Selamat, J. Bakar, Occurrence of biogenic amines and amines degrading bacteria in fish sauce. J. Food Sci. 28, 440–449 (2010)

    CAS  Google Scholar 

  9. L. Maintz, N. Novak, Histamine and histamine intolerance. Am. J. Clin. Nutr. 85, 1185–1196 (2007)

    CAS  Google Scholar 

  10. S.L. Taylor, Histamine food poisoning: toxicology and clinical aspects. Crit. Rev. Toxicol. 17, 91–128 (1986)

    Article  CAS  Google Scholar 

  11. European Commission, 2005. Commission Regulation (EC) No 2073/2005 of November 2005 on microbiological criteria for foodstuffs. http://eur297lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32005R2073:en:NOT)

  12. T. Kuda, M. Miyawaki, Reduction of histamine in fish sauces by rice bran nuka. J. Food Control 21, 1322–1326 (2010)

    Article  CAS  Google Scholar 

  13. Food and Drug Administration (FDA), decomposition and histamine in raw, frozen tuna and mahi-mahi, canned tuna and related species. Compliace Policy Guide. 7108.240 (1996)

  14. EFSA, Scientific opinion on risk based control of biogenic amine formation in fermented foods. EFSA J. 9(10), 2393–2487 (2011)

    Article  Google Scholar 

  15. T.V. Sankar, in Food safety with special reference to seafood, ed. by K. Ashok kumar, S.K. Panda, F. Hassan, S. Sanjeev, T.V. Sankar. Practical Aspects of seafood safety, (CIFT, Kochi, 2014), pp. 68–69

  16. Nick Byrd, Quick, easy and reliable detection of histamine in food using the Agilent 6490 triple Quadrupole LC/MS Jet stream technology. www.agilent.com/chem. 2013

  17. M.C. Vidal-Carou, M.T. Veciana-Nogues, A. Marine-Font, Spectrofluorometric determination of histamine in fish and meat products. J. Assoc. Off. Anal. Chem. 73, 565–567 (1990)

    CAS  Google Scholar 

  18. S.B. Patange, M.K. Mukundan, K. Ashok Kumar, A simple and rapid method for colorimeteric determination of histamine in fish flesh. J. Food Control 16, 465–472 (2005)

    Article  CAS  Google Scholar 

  19. J.E. Stratton, R.W. Hutkins, S.L. Taylor, Biogenic amines in cheese and other fermented foods. A review. J. Food Prot. 54, 460–470 (1991)

    Article  CAS  Google Scholar 

  20. M.A. Rabie, L. Simon-Sarkadi, H. Siliha, S. El-Seedy, A.-A. El-Badawy, Changes in free amino acids and biogenic amines of Egyptian salted-fermented fish (Feseekh) during ripening and storage. Food Chem. 115, 635–638 (2009)

    Article  CAS  Google Scholar 

  21. M.A. Rabie, A.O. Toliba, A.R. Sulieman, F.X. Malcata, Changes in biogenic amine contents throughout storage of canned fish products. Pak. J. Food Sci. 24(3), 137–150 (2014)

    Google Scholar 

  22. M.A. Rabie, S. Elsaidy, A.A. El-Badawy, H. Siliha, F.X. Malcata, Biogenic amine contents in selected Egyptian fermented foods as determined by ion-exchange chromatography. J. Food Prot. 74, 681–685 (2011)

    Article  CAS  Google Scholar 

  23. L. Lehane, J. Olley, Histamine fish poisoning revisited. Int. J. Food Microbiol. 58, 1–37 (2000)

    Article  CAS  Google Scholar 

  24. J. Lapa-Guimaraes, J. Pikova, New solvent system for thin layer chromatographic determination of nine biogenic amines in fish and squid. J. Chromatogr. 1045, 223–232 (2004)

    Article  CAS  Google Scholar 

  25. E.R. Lieber, S.L. Taylor, Thin layer chromatographic screening methods for histamine in tuna fish. J. Chromatogr. 153, 143–152 (1978)

    Article  CAS  Google Scholar 

  26. S.L. Taylor, E.R. Lieber, Thin layer chromatographic screening methods for histamine in tuna fish. J. Chromatogr. 153, 143–152 (1978)

    Article  Google Scholar 

  27. H.C. Chen, Y.C. Lee, C.M. Lin, D.F. Hwang, Y.H. Tsai, Determination of histamine and bacterial isolation in marlin fillets (Makaira nigricans) implicated in a food borne poisoning. J. Food Saf. 30, 699–710 (2010)

    CAS  Google Scholar 

  28. American Public Health Association (APHA), Compendium of methods for the microbiological examination of food. 4th ed, F.P. Downes, K. Ito, (Washington, DC, 2000)

  29. B.F. Coob, L. Aoaniz, C.A. Thompson, Biochemical and microbiology studies on shrimp: volatile nitrogen and amino nitrogen analysis. J. Food Sci. 38, 431–438 (1973)

    Article  Google Scholar 

  30. Food and Drug Administration (FDA), fish and fishery products hazards and controls guidance, 4th edn. Washington, DC: Department of Health and Human Services, Food and Drug Administration, Centre for Food Safety and Applied Nutrition (2011)

  31. Food and Drug Administration (FDA), Decomposition and histamine in raw, frozen tuna and mahi-mahi, canned tuna and related species. Compliance policy Guides, 7108.240, sec 540.525. (1996)

  32. C. Papadopoulou, V. Vosikis, A. Papageorgopoulou, V. Economou, S. Frillingos, Survey of the histamine content in fish samples randomly selected from the Greek retail market. J. Food Addit. Contam. 1, 122–129 (2008)

    Article  Google Scholar 

  33. S.H. Kim, R.J. Price, M.T. Morrissey, K.G. Field, C.I. Wei, H. An, Occurrence of histamine- forming bacteria in albacore and histamine accumulation in muscle at ambient temperature. J. Food Sci. 67, 1522–1528 (2002)

    Article  CAS  Google Scholar 

  34. Z. Tao, M. Sato, Y. Han, Z. Tan, A simple and rapid methd for histamine analysis in fish and fishery products by TLC determination. Food Control 22, 1154–1157 (2011)

    Article  CAS  Google Scholar 

  35. T. Nahla, Korashy, M. Farag, Histamine and histamine producing bacteria in some local and imported fish and their public health significance. J. Agri. Biol. Sci. 1, 329–336 (2005)

  36. L. Prester, J. Varnai, T. Orct, J. Vukusic, Dubravka, endotoxin and biogenic amine levels in Atlantic mackerel (Scomber scombrus), Sardine (Sardina pilchardus) and Mediterranean hake (Merluccius merluccius) stored at 22 °CC. J. Food Addit. Contam. 26, 355–362 (2009)

    Article  CAS  Google Scholar 

  37. L. Prester, T. Orct, J. Macan, J. Vukusic, D. Kipicic, Determination of biogenic amines and endotoxin in squid, musky octopus, Norway lobster, and mussel stored at room temperature. Arh. Hig. Rada. Toksikol. 61, 389–397 (2010)

    CAS  Google Scholar 

  38. R.J. Shakila, T.S. Vasundhara, K.V. Kumudavally, A comparison of the TLC—densitometry and HPLC method for the determination of biogenic amines in fish and fishery products. J. Food Chem. 75, 255–259 (2001)

    Article  Google Scholar 

  39. J.E. Valls, R.A. Bello, M.S. Kodaira, Semi quantitative analysis by thin-layer chromatography (TLC) of biogenic amines in dried, salted and canned fish products. J. Food Qual. 25, 165–176 (2002)

    Article  CAS  Google Scholar 

  40. Z.Y. Dai, Q.Q. Jiang, T. Zhou, J.J. Wu, J.Z. Bu, T.L. Zheng, Histamine production and bacterial growth in mackerel (Pneumatophorus japonicus) during storage. J. Food Biochem. 37, 246–253 (2013)

    Article  Google Scholar 

  41. C.Y. Chong, F. Abu Bakar, R. Abdul Rahman, J. Bakar, M.Z. Zaman, Biogenic amines, amino acids and microflora changes in Indian mackerel (Rastrelliger kanagurta) stored at ambient (25–29 °C) and ice temperature (0 °C). J. Food Sci. Technol. 51, 1118–1125 (2014)

    Article  CAS  Google Scholar 

  42. S. Moini, A.M. Sotoodeh, A. Haghoo, M. Moslemi, S.V. Hosseini, J.M. Regenstein, X.F. Sanchez, F. Aflaki, F. Yadollahi, Changes in biogenic amines and bacteria of Tiger-toothed croaker (Otolithes ruber) during ice storage. J. Aquat. Food Product Technol. 21, 147–155 (2012)

    Article  CAS  Google Scholar 

  43. K. Lang, Der fluchtige basenstickstoff (TVB-N) bei im binnenland in denverkehe gebrachten frischen seeficchen. Mitteilung. Archive Fur Lebensmittelhygiene 34, 7–10 (1983)

    CAS  Google Scholar 

  44. A. Arulkumar, S. Paramasivam, Biogenic amine production from fresh carangid fish (Carangoides praeustus) stored at 25 °C, in Proceeding of the UGC Sponsored National Seminar on Biovision (Recent Trends and Future Prespective of bioscience), ed. by G.V. Gopinath, N. Vijayanand (2014), pp. 31–35

  45. G. Ozyurt, E. Kuley, S. Ozkutuk, F. Ozogul, Sensory, microbiological and chemical assessment of the freshness of red mullet (Mullus barbatus) and goldband goatfish (Upeneus moluccensis) during storage in ice. J Food Chem. 114, 505–510 (2009)

    Article  CAS  Google Scholar 

  46. A. Arulkumar, S. Paramasivam, Sensory quality and biochemical changes in deep queen fish (Scomberoides tala) during ice Storage. Asian J. Microbiol. Biotech. Environ. Sci. 17, 117–125 (2015)

    Google Scholar 

Download references

Acknowledgments

The authors are gratefully acknowledged the Department of Science and Technology (DST)—Science and Engineering Research Board (SERB), Government of India, New Delhi for financial support (Grant No.SR/FT/LS-22/2010; dt. 02.05.2012) and the authorities of Alagappa University for providing the necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadayan Paramasivam.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arulkumar, A., Karthik, G., Paramasivam, S. et al. Histamine levels in Indian fish via enzymatic, TLC and HPLC methods during storage. Food Measure 11, 281–289 (2017). https://doi.org/10.1007/s11694-016-9395-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-016-9395-z

Keywords

Navigation