Skip to main content
Log in

Rapid estimation and quantification of sucrose content in fruit juices using Fourier transform infrared–attenuated total reflectance (FTIR–ATR) spectroscopy

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

An uncomplicated and rapid procedure has been developed for the quantitative analysis of sucrose in fruit samples (grape, pineapple, mango) through attenuated total reflectance–Fourier transform infrared absorbance measurements (ATR–FTIR). FTIR analysis takes considerably reduced time compared to the other classical methods. To calibrate the method, we used firstly, different concentrations of pure sucrose (from 1 to 5 %) and registered their IR maximal wavenumbers and peak intensity. The spectral peak of sucrose for each sample lies between 1057 and 1061 cm−1. DNS method was used to analyse the content of sucrose by using spectrophotometry. The wave length used for analysing is 540 nm. Also high performance liquid chromatography was used to analyse the sucrose content in the fruit juices. By comparing the retention time of sucrose standards and the sample juices, sucrose concentration was identified and quantified. The results of all three experiments/techniques support each other by justifying that the mango has the high content of sucrose followed by pineapple and grape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L.F. Loredana, L. Nicolae, D. Horst-A, S. Carmen, Spectroscopy 26, 93–104 (2011)

    Article  Google Scholar 

  2. J. Prodolliet, C. Hischenhuber, Lebensm Unters Forsch A 207, 1–12 (1998)

    Article  CAS  Google Scholar 

  3. S. M. Partridge, Nature 164 (1949)

  4. K.W. Swallow, N.H. Low, J. Agric. Food Chem. 38(9), 1828–1832 (1990)

    Article  CAS  Google Scholar 

  5. P. Lindner, E. Bermann, B. Gamarnik, J. Agric. Food Chem. 44(1), 139–140 (1996)

    Article  CAS  Google Scholar 

  6. N.H. Low, W. South, J. AOAC Int. 78(5), 1210–1218 (1995)

    CAS  Google Scholar 

  7. H.M. Merker, G.R. Beecher, J. Agric. Food Chem. 48(3), 577–599 (2000)

    Article  Google Scholar 

  8. P.H. Valoran, S.R. Jeffrey, Anal. Biochem. 283(2), 192–199 (2000)

    Article  Google Scholar 

  9. J.W. White, K. Winters, P. Martin, A. Rossmann, J. AOAC Int. 81(3), 610–619 (1998)

    CAS  Google Scholar 

  10. M.E. Tate, C.T. Bishop, J. Chem. 40(6), 1043–1048 (1962)

    Google Scholar 

  11. V.I. Simona, F. Florinela, C. Mihai, S. Carmen, Bull. Uasvm Agric. 69, 2 (2012)

    Google Scholar 

  12. T. Jagdish, I. Joseph, Soc. Sugar Res. Promot. 5, 143–148 (2003)

    Google Scholar 

  13. J.F.D. Kelly, G. Downey, J. Agric. Food Chem. 53, 3281–3286 (2005)

    Article  CAS  Google Scholar 

  14. A. Chis, F. Fetea, A. Taoutaou, C. Socaciu, Rom. Biotechnol. Lett. 15(6) (2010)

  15. D. Simona, S. Alina, S. Gabriel, P. Viorica, Ovidius Univ Ann Chem 24(2), 138–140 (2013)

    Google Scholar 

  16. K. Fernandez, E. Agosin, J. Agric. Food Chem. 55, 7294–7300 (2007)

    Article  CAS  Google Scholar 

  17. C.D. Patz, A. Blieke, R. Ristow, H. Dietrich, Anal. Chimica Acta 513, 81–89 (2004)

    Article  CAS  Google Scholar 

  18. J.P. Urtubia, F. Pérez-Correa, P.E. Agosin, Food Control 19, 382–388 (2008)

    Article  CAS  Google Scholar 

  19. V. Bellon-Maurel, C. Vallat, D. Goffinet, Appl. Spectrosc. 49, 556–562 (1995)

    Article  CAS  Google Scholar 

  20. F. Duarte, A. Barros, I. Delgadillo, C. Almeida, A.M. Gil, J. Agric. Food Chem. 50, 3104–3111 (2002)

    Article  CAS  Google Scholar 

  21. F. Cadet, B. Offmann, J. Agric. Food Chem. 45, 166–171 (1997)

    Article  CAS  Google Scholar 

  22. P. Ramasami, S.L. Jhaumeer, P. Rondeau, F. Cadet, H. Seepujak, A. Seeruttun, S. Afr. J. Chem. 57, 24–27 (2004)

    CAS  Google Scholar 

  23. D.K. Beullens, J. Irudayaraj, A. Rudnitskaya, A. Legin, B. Nicolaï, Sensors Actuators B 116, 107–115 (2006)

    Article  CAS  Google Scholar 

  24. D.H. Loredana, S. Carmen, Bull UASVM Agric 66, 2 (2009)

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to Dr. M. Vairamani, Dean, School of Bioengineering, SRM University, Kattankulathur, Tamil Nadu and Nanotechnology Department of SRM University, for permitting us to carry out the FTIR analysis in their laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Athmaselvi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nair, R., Venkatesh, S., Athmaselvi, K.A. et al. Rapid estimation and quantification of sucrose content in fruit juices using Fourier transform infrared–attenuated total reflectance (FTIR–ATR) spectroscopy. Food Measure 10, 24–31 (2016). https://doi.org/10.1007/s11694-015-9272-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-015-9272-1

Keywords

Navigation