Skip to main content
Log in

Optimization of taro–wheat composite flour cake using Taguchi technique

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Taro (Colocasia esculenta) is an underutilized crop, which has higher nutritional value. The present study utilizes taro as a potential substitute for wheat flour in the cake. The proximate composition, physicochemical properties, functional properties, and anti-nutritional properties were evaluated in the wheat, taro flours and their composite blends (5, 10, 15 and 20 % taro). The higher the substitution of taro flour in blends, carbohydrate, fibre content, WAI, WSI, BD, and emulsion properties were increased whereas protein content, OAC and foaming properties were decreased. A four-level, four-factor orthogonal array (L16) according to the Taguchi method was used to plan the experiments for the production of taro–wheat composite flour cake. The effect of four factors such as taro flour (5–20 %), fat (50–80 %), sugar (80–110 %) and egg (90–120 %) on the textural characteristics (firmness and chewiness), volume, color and sensory qualities (appearance, softness, taste, aroma and overall acceptability) of cakes were investigated. Results were analyzed on the basis of S/N ratios. The optimal levels thus determined for the four factors were: taro flour 10 %, fat 60 %, sugar 110 % and egg 100 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. Emmanuel-Ikpeme, C. Eneji, G. Igile, Nutritional and organoleptic properties of wheat (Triticum aestivum) and beniseed (Sesame indicum) composite flour baked foods. J. Food Res. 1, 84–91 (2012)

    CAS  Google Scholar 

  2. E.D.L. Hera, B. Oliete, M. Gomez, Batter characteristics and quality of cakes made with wheat–oats flour blends. J. Food Qual. 36, 146–153 (2013)

    Article  Google Scholar 

  3. F. Ronda, M. Gomez, P.A. Caballero, B. Oliete, C.A. Blanco, Improvement of quality of gluten-free layer cakes. Food Sci. Technol. Int. 15, 193–202 (2009)

    Article  CAS  Google Scholar 

  4. M. Gomez, L. Manchon, B. Oliete, E. Ruiz, P.A. Caballero, Adequacy of wholegrain non-wheat flours for layer cake elaboration. LWT—Food Sci. Technol. 43, 507–513 (2010)

    CAS  Google Scholar 

  5. M. Gomez, B. Oliete, C.M. Rosell, V. Pando, E. Fernandez, Studies on cake quality made of wheat-chickpea flour blends. LWT—Food Sci. Technol. 41, 1701–1709 (2008)

    CAS  Google Scholar 

  6. F.U. Ugwuona, J.I. Ogara, M.D. Awogbenja, Chemical and sensory quality of cakes formulated with wheat, soybean and cassava flours. Indian J. Life Sci. 1, 1–6 (2012)

    Google Scholar 

  7. AOAC, Official methods of analysis, 15th edn. (Association of Official Analytical Chemists, Washington, DC, 1990)

    Google Scholar 

  8. N. Raghuramulu, M.K. Nair, S. Kalyanasundaram, A manual of laboratory techniques NIN (ICMR, Hyderabad, 1983)

    Google Scholar 

  9. S. Sadasivam, A. Manickam, Biochemical methods for agricultural sciences (Wiley Eastern Ltd., Chennai, 1992)

    Google Scholar 

  10. M. Kaur, P. Kaushal, K.S. Sandhu, Studies on physicochemical and pasting properties of taro (Colocasia esculenta L.) flour in comparison with a cereal, tuber and legume flour. J. Food Sci. Technol. 50, 94–100 (2013)

    Article  CAS  Google Scholar 

  11. P. Kaushal, V. Kumar, H.K. Sharma, Comparative study of physicochemical, functional, antinutritional and pasting properties of taro (Colocasia esculenta), rice (Oryza sativa) flour, pigeonpea (Cajanus cajan) flour and their blends. LWT—Food Sci. Technol. 48, 59–68 (2012)

    CAS  Google Scholar 

  12. F.W. Sosulski, The centrifuge method for determining flour absorption in hard red spring wheats. Cereal Chem. 39, 344–350 (1962)

    Google Scholar 

  13. M.J.Y. Lin, E.S. Humbert, F.W. Sosulski, Certain functional properties of sunflower meal products. J. Food Sci. 39, 368–370 (1974)

    Article  Google Scholar 

  14. M. Nazck, L.L. Diosady, L.J. Rubin, Functional properties of canola meals produced by two-phase solvent extraction systems. J. Food Sci. 50, 1685–1688 (1985)

    Article  Google Scholar 

  15. S.K. Sathe, S.S. Deshpande, D.K. Salunkhe, Functional properties of lupin seeds (Lupinus mutabilis) proteins and protein concentrates. J. Food Sci. 47, 491–497 (1982)

    Article  CAS  Google Scholar 

  16. R.A. Day, A.L. Underwood, Quantitative analysis, 5th edn. (Prentice-Hall Publication, Englewood Cliffs, NJ, 1986)

    Google Scholar 

  17. D.W. Griffiths, The phytate content and iron-binding capacity of various field bean (Vicia faba) preparations and extracts. J. Sci. Food Agric. 33, 847–851 (1982)

    Article  CAS  Google Scholar 

  18. C.R. Wang, K.C. Chang, K. Grafton, Canning quality of pinto and navy beans. J. Food Sci. 53, 772–776 (1988)

    Article  Google Scholar 

  19. S. Rangana, Handbook of analysis and quality control for fruit and vegetable products, 2nd edn. (Tata McGraw-Hill Publ. Co., New Delhi, 1986)

    Google Scholar 

  20. I.C. Onwueme, Colocasia and Xanthosoma. In The Tropical Tuber Crops (Wiley, New York, 1978), pp. 199–227

    Google Scholar 

  21. B. Srilakshmi, Nutritional science, 3rd edn. (New Age International (P) Ltd. Publishers, New Delhi, 2008), pp. 21–39

    Google Scholar 

  22. M.S. Ammar, A.E. Hegazy, S.H. Bedeir, Using of taro flour as partial substitute of wheat flour in bread making. World J. Dairy Food Sci. 4(2), 94–99 (2009)

    Google Scholar 

  23. N.Y.N. Aboubakar, J. Scher, C.M.F. Mbofung, Physicochemical, thermal and microstructure of six varieties of taro (Colocasia esculenta L. Schott) flours and starches. J. Food Eng. 86, 294–305 (2008)

    Article  CAS  Google Scholar 

  24. Y.N. Njintang, C.M.F. Mbofung, F. Balaam, P. Kitissou, J. Scher, Effect of taro (Colocasia esculenta) flour addition on the functional and alveographic properties of wheat flour and dough. J. Sci. Food Agric. 88, 273–279 (2008)

    Article  CAS  Google Scholar 

  25. A.S. Amon, R.Y. Soro, P.K.B. Koffi, E.A. Dué, L.P. Kouamé, Biochemical characteristics of flours from Ivorian taro (Colocasia esculenta, Cv Yatan) corm as affected by boiling time. Adv. J. Food Sci. Technol. 3, 424–435 (2011)

    CAS  Google Scholar 

  26. P.L. Soni, H.W. Sharama, D.N. Beniller, E.F. Paschal, Starches of Dioscorea balkaphylla and Amorphopallins companularis. Starch/Stärke 37, 6–9 (1985)

    Article  CAS  Google Scholar 

  27. C.I. Iwuoha, F.A. Kalu, Calcium oxalate and physico-chemical properties of cocoyam (Colocasia esculenta and Xanthosoma sagittifolium) tuber flours as affected by processing. Food Chem. 54, 61–66 (1995)

    Article  CAS  Google Scholar 

  28. T. Noda, S. Tsuda, M. Mori, S. Takigawa, C.M. Endo, S.J. Kim, N. Hashimoto, H. Yamauchi, Effect of potato starch properties on instant noodle quality in wheat flour and potato starch blends. Starch/Stärke 58, 18–24 (2006)

    Article  CAS  Google Scholar 

  29. J. Tattiyakul, S. Asavasaksakul, P. Pradipasena, Chemical and physical properties of flour extracted from taro (Colocasia esculenta L. Schott) grown in different regions of Thailand. Sci. Asia 32, 279–284 (2005)

    Article  Google Scholar 

  30. S.C. Noonan, G.P. Savage, Oxalate content of food and its effect on human. Asia Pacific J. Clin. Nutr. 8, 64–74 (1999)

    Article  CAS  Google Scholar 

  31. H.L. Walter, L. Fanny, C. Charles, R. Christian, Minerals and phytic acid interaction: is it a real problem for human nutrition. Int. J. Food Sci. Technol. 37, 727–739 (2002)

    Article  Google Scholar 

  32. M.N. Singh, S. Liu, S.F. Vaughn, Effect of corn bran as dietary fiber addition on baking and sensory quality. Biocatal. Agric. Biotechnol. 1, 348–352 (2012)

    CAS  Google Scholar 

  33. J.A. Delcour, R.C. Hoseney, Principles of cereal science and technology, 3rd edn. (American Association of Cereal Chemists, Inc., St. Paul, MN, 2010)

    Book  Google Scholar 

  34. J.H. Kim, H.J. Lee, H.S. Lee, E.J. Lim, J.Y. Imm, H.J. Suh, Physical and sensory characteristics of fibre-enriched sponge cakes made with Opuntia humifusa. LWT—Food Sci. Technol. 47, 478–484 (2012)

    CAS  Google Scholar 

  35. B. Abu-jdayil, H.A. Mohammed, A. Eassa, Rheology of wheat starch–milk–sugar systems: effect of starch concentration, sugar type and concentration and milk fat content. J. Food Eng. 64, 207–212 (2004)

    Article  Google Scholar 

  36. I. Ferrari, C. Alamprese, M. Mariotti, M. Lucisano, M. Rossi, Optimization of cake fat quantity and composition using response surface methodology. Int. J. Food Sci. Technol. 48, 468–476 (2013)

    Article  CAS  Google Scholar 

  37. A. Asghar, M. Abbas, Dried egg powder utilization, a new frontier in bakery products. Agric. Biol. J. N. Am. 3, 493–505 (2012)

    Article  Google Scholar 

  38. T.B. Barker, Quality engineering by design: Taguchi’s philosophy. In Taguchi Methods: Applications in World Industry, 3rd edn. (IFS Publications, UK, 1989), pp. 39–56

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Sharma, H.K., Kaushal, P. et al. Optimization of taro–wheat composite flour cake using Taguchi technique. Food Measure 9, 35–51 (2015). https://doi.org/10.1007/s11694-014-9208-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-014-9208-1

Keywords

Navigation