Skip to main content
Log in

When genome integrity and cell cycle decisions collide: roles of polo kinases in cellular adaptation to DNA damage

  • Review
  • Published:
Systems and Synthetic Biology

Abstract

The drive to proliferate and the need to maintain genome integrity are two of the most powerful forces acting on biological systems. When these forces enter in conflict, such as in the case of cells experiencing DNA damage, feedback mechanisms are activated to ensure that cellular proliferation is stopped and no further damage is introduced while cells repair their chromosomal lesions. In this circumstance, the DNA damage response dominates over the biological drive to proliferate, and may even result in programmed cell death if the damage cannot be repaired efficiently. Interestingly, the drive to proliferate can under specific conditions overcome the DNA damage response and lead to a reactivation of the proliferative program in checkpoint-arrested cells. This phenomenon is known as adaptation to DNA damage and is observed in all eukaryotic species where the process has been studied, including normal and cancer cells in humans. Polo-like kinases (PLKs) are critical regulators of the adaptation response to DNA damage and they play key roles at the interface of cell cycle and checkpoint-related decisions in cells. Here, we review recent progress in defining the specific roles of PLKs in the adaptation process and how this conserved family of eukaryotic kinases can integrate the fundamental need to preserve genomic integrity with effective cellular proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA 90:7915–7922

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Archambault V, Glover DM (2009) Polo-like kinases: conservation and divergence in their functions and regulation. Nat Rev Mol Cell Biol 10:265–275

    Article  CAS  PubMed  Google Scholar 

  • Bartek J, Lukas J (2007) DNA damage checkpoints: from initiation to recovery or adaptation. Curr Opin Cell Biol 19:238–245

    Article  CAS  PubMed  Google Scholar 

  • Chapman JR, Taylor MR, Boulton SJ (2012) Playing the end game: DNA double-strand break repair pathway choice. Mol Cell 47:497–510

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury D, Keogh MC, Ishii H, Peterson CL, Buratowski S, Lieberman J (2005) gamma-H2AX dephosphorylation by protein phosphatase 2A facilitates DNA double-strand break repair. Mol Cell 20:801–809

    Article  CAS  PubMed  Google Scholar 

  • Clemenson C, Marsolier-Kergoat MC (2009) DNA damage checkpoint inactivation: adaptation and recovery. DNA Repair 8:1101–1109

    Article  CAS  PubMed  Google Scholar 

  • Coulie PG, Van den Eynde BJ, van der Bruggen P, Boon T (2014) Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer 14:135–146

    Article  CAS  PubMed  Google Scholar 

  • D’Amours D, Jackson SP (2002) The Mre11 complex: at the crossroads of DNA repair and checkpoint signalling. Nat Rev Mol Cell Biol 3:317–327

    Article  PubMed  Google Scholar 

  • Donnianni RA et al (2010) Elevated levels of the polo kinase Cdc5 override the Mec1/ATR checkpoint in budding yeast by acting at different steps of the signaling pathway. PLoS Genet 6:e1000763

    Article  PubMed Central  PubMed  Google Scholar 

  • Dotiwala F, Haase J, Arbel-Eden A, Bloom K, Haber JE (2007) The yeast DNA damage checkpoint proteins control a cytoplasmic response to DNA damage. Proc Natl Acad Sci USA 104:11358–11363

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dotiwala F, Eapen VV, Harrison JC, Arbel-Eden A, Ranade V, Yoshida S, Haber JE (2013) DNA damage checkpoint triggers autophagy to regulate the initiation of anaphase. Proc Natl Acad Sci USA 110:E41–E49

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • el Bahassi M (2011) Polo-like kinases and DNA damage checkpoint: beyond the traditional mitotic functions. Exp Biol Med 236:648–657

    Article  CAS  Google Scholar 

  • Fridman JS, Lowe SW (2003) Control of apoptosis by p53. Oncogene 22:9030–9040

    Article  CAS  PubMed  Google Scholar 

  • Galgoczy DJ, Toczyski DP (2001) Checkpoint adaptation precedes spontaneous and damage-induced genomic instability in yeast. Mol Cell Biol 21:1710–1718

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gallo-Fernandez M, Saugar I, Ortiz-Bazan MA, Vazquez MV, Tercero JA (2012) Cell cycle-dependent regulation of the nuclease activity of Mus81-Eme1/Mms4. Nucleic Acids Res 40:8325–8335

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garrido F, Ruiz-Cabello F, Cabrera T, Perez-Villar JJ, Lopez-Botet M, Duggan-Keen M, Stern PL (1997) Implications for immunosurveillance of altered HLA class I phenotypes in human tumours. Immunol Today 18:89–95

    Article  CAS  PubMed  Google Scholar 

  • Guillemain G et al (2007) Mechanisms of checkpoint kinase Rad53 inactivation after a double-strand break in Saccharomyces cerevisiae. Mol Cell Biol 27:3378–3389

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  • Harper JW, Elledge SJ (2007) The DNA damage response: ten years after. Mol Cell 28:739–745

    Article  CAS  PubMed  Google Scholar 

  • Hartwell LH, Weinert TA (1989) Checkpoints: controls that ensure the order of cell cycle events. Science 246:629–634

    Article  CAS  PubMed  Google Scholar 

  • Hu F, Wang Y, Liu D, Li Y, Qin J, Elledge SJ (2001) Regulation of the Bub2/Bfa1 GAP complex by Cdc5 and cell cycle checkpoints. Cell 107:655–665

    Article  CAS  PubMed  Google Scholar 

  • Huertas P (2010) DNA resection in eukaryotes: deciding how to fix the break. Nat Struct Mol Biol 17:11–16

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huertas D, Sendra R, Munoz P (2009) Chromatin dynamics coupled to DNA repair. Epigenetics 4:31–42

    Article  CAS  PubMed  Google Scholar 

  • Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461:1071–1078

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jin F, Wang Y (2006) Budding yeast DNA damage adaptation mutants exhibit defects in mitotic exit. Cell Cycle 5:2914–2919

    Article  CAS  PubMed  Google Scholar 

  • Keogh MC et al (2006) A phosphatase complex that dephosphorylates gammaH2AX regulates DNA damage checkpoint recovery. Nature 439:497–501

    Article  CAS  PubMed  Google Scholar 

  • Kubara PM, Kerneis-Golsteyn S, Studeny A, Lanser BB, Meijer L, Golsteyn RM (2012) Human cells enter mitosis with damaged DNA after treatment with pharmacological concentrations of genotoxic agents. Biochem J 446:373–381

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Langerak P, Russell P (2011) Regulatory networks integrating cell cycle control with DNA damage checkpoints and double-strand break repair. Philos Trans R Soc Lond Ser B Biol Sci 366:3562–3571

    CAS  Google Scholar 

  • Lee SE, Moore JK, Holmes A, Umezu K, Kolodner RD, Haber JE (1998) Saccharomyces Ku70, mre11/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell 94:399–409

    Article  CAS  PubMed  Google Scholar 

  • Leroy C, Lee SE, Vaze MB, Ochsenbein F, Guerois R, Haber JE, Marsolier-Kergoat MC (2003) PP2C phosphatases Ptc2 and Ptc3 are required for DNA checkpoint inactivation after a double-strand break. Mol Cell 11:827–835

    Article  CAS  PubMed  Google Scholar 

  • Liang F, Wang Y (2007) DNA damage checkpoints inhibit mitotic exit by two different mechanisms. Mol Cell Biol 27:5067–5078

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu XS, Li H, Song B, Liu X (2010) Polo-like kinase 1 phosphorylation of G2 and S-phase-expressed 1 protein is essential for p53 inactivation during G2 checkpoint recovery. EMBO Rep 11:626–632

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lu LY, Yu X (2009) The balance of polo-like kinase 1 in tumorigenesis. Cell Div 4:4

    Article  PubMed Central  PubMed  Google Scholar 

  • Macurek L et al (2008) Polo-like kinase-1 is activated by aurora A to promote checkpoint recovery. Nature 455:119–123

    Article  CAS  PubMed  Google Scholar 

  • Macurek L, Lindqvist A, Voets O, Kool J, Vos HR, Medema RH (2010) Wip1 phosphatase is associated with chromatin and dephosphorylates gammaH2AX to promote checkpoint inhibition. Oncogene 29:2281–2291

    Article  CAS  PubMed  Google Scholar 

  • Mailand N, Bekker-Jensen S, Bartek J, Lukas J (2006) Destruction of Claspin by SCFbetaTrCP restrains Chk1 activation and facilitates recovery from genotoxic stress. Mol Cell 23:307–318

    Article  CAS  PubMed  Google Scholar 

  • Mamely I et al (2006) Polo-like kinase-1 controls proteasome-dependent degradation of Claspin during checkpoint recovery. Curr Biol (CB) 16:1950–1955

    Article  CAS  Google Scholar 

  • Matos J, Blanco MG, Maslen S, Skehel JM, West SC (2011) Regulatory control of the resolution of DNA recombination intermediates during meiosis and mitosis. Cell 147:158–172

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matos J, Blanco MG, West SC (2013) Cell-cycle kinases coordinate the resolution of recombination intermediates with chromosome segregation. Cell Rep 4:76–86

    Article  CAS  PubMed  Google Scholar 

  • Moynahan ME, Jasin M (2010) Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat Rev Mol Cell Biol 11:196–207

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakada S, Chen GI, Gingras AC, Durocher D (2008) PP4 is a gamma H2AX phosphatase required for recovery from the DNA damage checkpoint. EMBO Rep 9:1019–1026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • O’Neill BM, Szyjka SJ, Lis ET, Bailey AO, Yates JR 3rd, Aparicio OM, Romesberg FE (2007) Pph3–Psy2 is a phosphatase complex required for Rad53 dephosphorylation and replication fork restart during recovery from DNA damage. Proc Natl Acad Sci USA 104:9290–9295

    Article  PubMed Central  PubMed  Google Scholar 

  • Panier S, Durocher D (2013) Push back to respond better: regulatory inhibition of the DNA double-strand break response. Nat Rev Mol Cell Biol 14:661–672

    Article  CAS  PubMed  Google Scholar 

  • Papamichos-Chronakis M, Krebs JE, Peterson CL (2006) Interplay between Ino80 and Swr1 chromatin remodeling enzymes regulates cell cycle checkpoint adaptation in response to DNA damage. Genes Dev 20:2437–2449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pellicioli A, Lee SE, Lucca C, Foiani M, Haber JE (2001) Regulation of Saccharomyces Rad53 checkpoint kinase during adaptation from DNA damage-induced G2/M arrest. Mol Cell 7:293–300

    Article  CAS  PubMed  Google Scholar 

  • Peschiaroli A, Dorrello NV, Guardavaccaro D, Venere M, Halazonetis T, Sherman NE, Pagano M (2006) SCFbetaTrCP-mediated degradation of Claspin regulates recovery from the DNA replication checkpoint response. Mol Cell 23:319–329

    Article  CAS  PubMed  Google Scholar 

  • Raulet DH (2006) Missing self recognition and self tolerance of natural killer (NK) cells. Semin Immunol 18:145–150

    Article  CAS  PubMed  Google Scholar 

  • Sandell LL, Zakian VA (1993) Loss of a yeast telomere: arrest, recovery, and chromosome loss. Cell 75:729–739

    Article  CAS  PubMed  Google Scholar 

  • Schleker T, Shimada K, Sack R, Pike BL, Gasser SM (2010) Cell cycle-dependent phosphorylation of Rad53 kinase by Cdc5 and Cdc28 modulates checkpoint adaptation. Cell Cycle 9:350–363

    Article  CAS  PubMed  Google Scholar 

  • Schwartz EK, Wright WD, Ehmsen KT, Evans JE, Stahlberg H, Heyer WD (2012) Mus81–Mms4 functions as a single heterodimer to cleave nicked intermediates in recombinational DNA repair. Mol Cell Biol 32:3065–3080

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Simoneau A, Robellet X, Ladouceur AM, D’Amours D (2014) Cdk1-dependent regulation of the Mre11 complex couples DNA repair pathways to cell cycle progression. Cell Cycle 13:1078–1090

    Article  CAS  PubMed  Google Scholar 

  • Swift LH, Golsteyn RM (2014) Genotoxic anti-cancer agents and their relationship to DNA damage, mitosis, and checkpoint adaptation in proliferating cancer cells. Int J Mol Sci 15:3403–3431

    Article  PubMed Central  PubMed  Google Scholar 

  • Syljuasen RG (2007) Checkpoint adaptation in human cells. Oncogene 26:5833–5839

    Article  CAS  PubMed  Google Scholar 

  • Syljuasen RG, Jensen S, Bartek J, Lukas J (2006) Adaptation to the ionizing radiation-induced G2 checkpoint occurs in human cells and depends on checkpoint kinase 1 and polo-like kinase 1 kinases. Cancer Res 66:10253–10257

    Article  CAS  PubMed  Google Scholar 

  • Toczyski DP, Galgoczy DJ, Hartwell LH (1997) CDC5 and CKII control adaptation to the yeast DNA damage checkpoint. Cell 90:1097–1106

    Article  CAS  PubMed  Google Scholar 

  • Valerio-Santiago M, de Los Santos-Velazquez AI, Monje-Casas F (2013) Inhibition of the mitotic exit network in response to damaged telomeres. PLoS Genet 9:e1003859

    Article  PubMed Central  PubMed  Google Scholar 

  • van Vugt MA, Bras A, Medema RH (2004) Polo-like kinase-1 controls recovery from a G2 DNA damage-induced arrest in mammalian cells. Mol Cell 15:799–811

    Article  PubMed  Google Scholar 

  • van Vugt MA et al (2010) A mitotic phosphorylation feedback network connects Cdk1, Plk1, 53BP1, and Chk2 to inactivate the G(2)/M DNA damage checkpoint. PLoS Biol 8:e1000287

    Article  PubMed Central  PubMed  Google Scholar 

  • Vaze MB et al (2002) Recovery from checkpoint-mediated arrest after repair of a double-strand break requires Srs2 helicase. Mol Cell 10:373–385

    Article  CAS  PubMed  Google Scholar 

  • Vidanes GM, Sweeney FD, Galicia S, Cheung S, Doyle JP, Durocher D, Toczyski DP (2010) CDC5 inhibits the hyperphosphorylation of the checkpoint kinase Rad53, leading to checkpoint adaptation. PLoS Biol 8:e1000286

    Article  PubMed Central  PubMed  Google Scholar 

  • Wallace SS, Murphy DL, Sweasy JB (2012) Base excision repair and cancer. Cancer Lett 327:73–89

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yata K, Lloyd J, Maslen S, Bleuyard JY, Skehel M, Smerdon SJ, Esashi F (2012) Plk1 and CK2 act in concert to regulate Rad51 during DNA double strand break repair. Mol Cell 45:371–383

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoo HY, Kumagai A, Shevchenko A, Shevchenko A, Dunphy WG (2004) Adaptation of a DNA replication checkpoint response depends upon inactivation of Claspin by the polo-like kinase. Cell 117:575–588

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Nirantar S, Lim HH, Sinha I, Surana U (2009) DNA damage checkpoint maintains CDH1 in an active state to inhibit anaphase progression. Dev Cell 17:541–551

    Article  CAS  PubMed  Google Scholar 

  • Zhao R et al (2000) Analysis of p53-regulated gene expression patterns using oligonucleotide arrays. Genes Dev 14:981–993

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Julie St-Pierre and members of the D’Amours laboratory for their comments on the manuscript. Research in D.D.’s laboratory is supported by the Cancer Research Society and by the Canadian Institutes of Health Research (MOP 82912). D.D. is a recipient of a Tier II Canada Research Chair in Cell Cycle Regulation and Genomic Integrity. D.S. is supported by a postdoctoral fellowship from the FRQS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien D’Amours.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serrano, D., D’Amours, D. When genome integrity and cell cycle decisions collide: roles of polo kinases in cellular adaptation to DNA damage. Syst Synth Biol 8, 195–203 (2014). https://doi.org/10.1007/s11693-014-9151-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11693-014-9151-9

Keywords

Navigation