Skip to main content

Advertisement

Log in

Impact of Hybridization on Shape, Variation and Covariation of the Mouse Molar

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Hybridization can generate phenotypes departing from the parental range through many processes: increased variance due to increased heterozygosity, decreased phenotypic integration and altered covariation structure due to changes in the expression of (co)variation generating developmental processes, and transgression that may arise from epistasis and compensatory genes. Morphometric assessment of shape differentiation, variance and covariance may shed light on these processes, especially for complex characters for which the genetic basis has not yet been assessed. The shape of the first upper molar was thus quantified in a cross between inbred strains of the two European subspecies of the house mouse (Mus musculus domesticus and M. m. musculus). Hybrids appeared as moderately transgressive. Morphological variance was increased in F2s, back to levels observed in wild populations. The pattern of variance–covariance was different between the two parental strains, but restored to a wild-type structure in F2s. Finally, F2s displayed a degree of morphological integration comparable to wild populations but lower than observed in the parental strains. This is interpreted as the result of the reshuffling of the standing genetic variation in hybrids that should have restored the expression of (co)variance generating processes made ineffective in parents due to random allele fixation of some loci. Inter-parental differentiation was more important in regions of the tooth developing early during embryogenesis, whereas transgression was more pronounced in late developing regions. Mutations may more easily generate important geometric differences early during tooth development, occurring as a cascade of signalization from the first cusp to initiate onward. Epistasis and constraints of neighboring parts may be more important later, promoting transgression and impeding differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Albertson, R. C., Streelman, J. T., Kocher, T. D., & Yelick, P. C. (2005). Integration and evolution of the cichlid mandible: The molecular basis of alternate feeding strategies. Proceedings of the National Academy of Sciences, USA, 102(45), 16287–16292.

    Article  CAS  Google Scholar 

  • Alibert, P., Fel-Clair, F., Manolakou, K., Britton-Davidian, J., & Auffray, J.-C. (1997). Developmental stability, fitness, and trait size in laboratory hybrids between European subspecies of the house mouse. Evolution, 51(4), 1284–1295.

    Article  Google Scholar 

  • Alibert, P., Renaud, S., Dod, B., Bonhomme, F., & Auffray, J.-C. (1994). Fluctuating asymmetry in the Mus musculus hybrid zone: A heterotic effect in disrupted co-adapted genomes. Proceedings of the Royal Society, London B, 258, 53–59.

    Article  CAS  Google Scholar 

  • Amaral, A. R., Lovewell, G., Coelho, M. M., Amato, G., & Rosenbaum, H. C. (2014). Hybrid speciation in a marine mammal: The Clymene Dolphin (Stenella clymene). PLoS ONE, 9(1), e83645. doi:10.1371/journal.pone.0083645.

    Article  PubMed  PubMed Central  Google Scholar 

  • Auffray, J.-C., Alibert, P., Latieule, C., & Dod, B. (1996). Relative warp analysis of skull shape across the hybrid zone of the house mouse (Mus musculus) in Denmark. Journal of Zoology, London, 240, 441–455.

    Article  Google Scholar 

  • Bell, M. A., & Travis, M. P. (2005). Hybridization, transgressive segregation, genetic covariation, and adaptive radiation. Trends in Ecology and Evolution, 20(7), 358–361.

    Article  PubMed  Google Scholar 

  • Boursot, P., Auffray, J.-C., Britton-Davidian, J., & Bonhomme, F. (1993). The evolution of house mice. Annual Review of Ecology and Systematics, 24, 119–152.

    Article  Google Scholar 

  • Brem, R. B., & Kruglyak, L. (2005). The landscape of genetic complexity across 5,700 gene expression traits in yeast. Proceedings of the National Academy of Sciences, USA, 102(5), 1572–1577.

    Article  CAS  Google Scholar 

  • Cho, S.-W., Lee, H.-A., Cai, J., Lee, M.-J., Kim, J.-Y., Ohshima, H., et al. (2007). The primary enamel knot determines the position of the first buccal cusp in developing mice molars. Differentiation, 75(5), 441–451. doi:10.1111/j.1432-0436.2006.00153.x.

    Article  CAS  PubMed  Google Scholar 

  • Debat, V., Alibert, P., David, P., Paradis, E., & Auffray, J.-C. (2000). Independence between developmental stability and canalization in the skull of the house mouse. Proceedings of the Royal Society of London, Biological Sciences (serie B), 267, 423–430.

    Article  CAS  Google Scholar 

  • Debat, V., Milton, C. C., Rutherford, S., Klingenberg, C. P., & Hoffmann, A. A. (2006). Hsp90 and the quantitaive variation of wing shape in Drosophila melanogaster. Evolution, 60(12), 2529–2538.

    Article  CAS  PubMed  Google Scholar 

  • Dittrich-Reed, D. R., & Fitzpatrick, B. M. (2013). Transgressive hybrids as hopeful monsters. Evolutionary Biology, 40, 310–315. doi:10.1007/s11692-012-9209-0.

    Article  PubMed  Google Scholar 

  • Dray, S., & Dufour, A.-B. (2007). The ade4 package: Implementing the duality diagram for ecologists. Journal of Statistical Software, 22, 1–20.

    Article  Google Scholar 

  • Hallgrímsson, B., Jamniczky, H. A., Young, N. M., Rolian, C., Parsons, T. E., Boughner, J. C., et al. (2009). Deciphering the palimpsest: Studying the relationship between morphological integration and phenotypic covariation. Evolutionary Biology, 36, 355–376.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hallgrímsson, B., & Lieberman, D. E. (2008). Mouse models and the evolutionary developmental biology of the skull. Integrative and Comparative Biology, 48(3), 373–384.

    Article  PubMed  Google Scholar 

  • Jamniczky, H. A., & Hallgrímsson, B. (2011). Modularity in the skull and cranial vasculature of laboratory mice: Implications for the evolution of complex phenotypes. Evolution and Development, 13(1), 28–37.

    Article  PubMed  Google Scholar 

  • Jernvall, J., & Thesleff, I. (2000). Reiterative signaling and patterning during mammalian tooth morphogenesis. Mechanisms of Development, 92, 19–29.

    Article  CAS  PubMed  Google Scholar 

  • Klingenberg, C. P. (2009). Morphometric integration and modularity in configurations of landmarks: Tools for evaluating a priori hypotheses. Evolution and Development, 11(4), 405–421.

    Article  PubMed  PubMed Central  Google Scholar 

  • Klingenberg, C. P. (2013). Cranial integration and modularity: Insights into evolution and development from morphometric data. Hystrix, The Italian Journal of Mammalogy, 24(1), 43–58.

    Google Scholar 

  • Klingenberg, C. P., Mebus, K., & Auffray, J.-C. (2003). Developmental integration in a complex morphological structure: How distinct are the modules in the mouse mandible? Evolution and Development, 5(5), 522–531.

    Article  PubMed  Google Scholar 

  • Klingenberg, C. P., & Navarro, N. (2012). Development of the mouse mandible: A model system for complex morphological structures. In M. Macholán, S. J. E. Baird, P. Munclinger, & J. Piálek (Eds.), Evolution of the house mouse (pp. 135–149). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Kuhl, F. P., & Giardina, C. R. (1982). Elliptic Fourier features of a closed contour. Computer Graphics and Image Processing, 18, 259–278.

    Article  Google Scholar 

  • Labonne, G., Navarro, N., Laffont, R., Chateau-Smith, C., & Montuire, S. (2014). Developmental integration in a functional unit: Deciphering processes from adult dental morphology. Evolution and Development, 16(4), 224–232. doi:10.1111/ede.12085.

    Article  PubMed  Google Scholar 

  • Landin, M. A., Nygård, S., Shabestari, M. G., Babaie, E., Reseland, J. E., & Osmundsen, H. (2015). Mapping the global mRNA transcriptome during development of the murine first molar. Frontiers in Genetics, 6, 47.

    Article  PubMed  PubMed Central  Google Scholar 

  • Larsen, P. A., Marchán-Rivadeneira, M. R., & Baker, R. J. (2010). Natural hybridization generates mammalian lineage with species characteristics. Proceedings of the National Academy of Sciences, USA, 107(25), 11447–11452. doi:10.1073/pnas.1000133107.

    Article  CAS  Google Scholar 

  • Millien, V., & Bovy, H. (2010). When teeth and bones disagree: Body mass estimation of a giant extinct rodent. Journal of Mammalogy, 91(1), 11–18.

    Article  Google Scholar 

  • Mitteroecker, P., & Bookstein, F. L. (2008). The evolutionary role of modularity and integration in the hominoid cranium. Evolution, 62(4), 943–958.

    Article  PubMed  Google Scholar 

  • Monteiro, L. R., Bonato, V., & Reis, S. F. D. (2005). Evolutionary integration and morphological diversification in complex morphological structures: Mandible shape divergence in spiny rats (Rodentia, Echimyidae). Evolution and Development, 7(5), 429–439.

    Article  PubMed  Google Scholar 

  • Nichols, P., Genner, M. J., Oosterhout, C. V., Smith, A., Parsons, P., Sungani, H., et al. (2014). Secondary contact seeds phenotypic novelty in cichlid fishes. Proceedings of the Royal Society, London B, 282, 20142272.

    Article  Google Scholar 

  • Nolte, A. W., & Sheets, H. D. (2005). Shape based assignments tests suggest transgressive phenotypes in natural sculpin hybrids (Teleostei, Scorpaeniformes, Cottidae). Frontiers in Zoology, 2, 11. doi:10.1186/1742-9994-2-11.

    Article  PubMed  PubMed Central  Google Scholar 

  • Oliveira, R., Godinho, R., Randi, E., & Alves, P. C. (2008). Hybridization versus conservation: Are domestic cats threatening the genetic integrity of wildcats (Felis silvestris silvestris) in Iberian Peninsula? Philsophical Transaction of the Royal Society B, 363, 2953–2961. doi:10.1098/rstb.2008.0052.

    Article  Google Scholar 

  • Orsini, P., & Cheylan, G. (1988). Les rongeurs de Corse: Modifications de taille en relation avec l’isolement en milieu insulaire. Bulletin d’Ecologie, 19(2–3), 411–416.

    Google Scholar 

  • Parsons, K. J., Son, Y. H., & Albertson, R. C. (2011). Hybridization promotes evolvability in African cichlids: Connections between transgressive segregation and phenotypic integration. Evolutionary Biology, 38, 306–315. doi:10.1007/s11692-011-9126-7.

    Article  Google Scholar 

  • Pavlicev, M., Cheverud, J. M., & Wagner, G. P. (2009). Measuring morphological integration using eigenvalue variance. Evolutionary Biology, 36, 157–170.

    Article  Google Scholar 

  • Peterkova, R., Lesot, H., Vonesch, J. L., Peterka, M., & Ruch, J. V. (1996). Mouse molar morphogenesis revisited by three dimensional reconstruction. I. Analysis of initial stages of the first upper molar development revealed two transient buds. International Journal of Developmental Biology, 40, 1009–1016.

    CAS  PubMed  Google Scholar 

  • Randi, E. (2008). Detecting hybridization between wild species and their domesticated relatives. Molecular Ecology, 17, 285–293. doi:10.1111/j.1365-294X.2007.03417.x.

    Article  PubMed  Google Scholar 

  • Raufaste, N., Orth, A., Belkhir, K., Senet, D., Smalda, C., Baird, S. J. E., et al. (2005). Inferences of selection and migration in the Danish house mouse hybrid zone. Biological Journal of the Linnean Society, 84, 593–616.

    Article  Google Scholar 

  • Renaud, S. (2005). First upper molar and mandible shape of wood mice (Apodemus sylvaticus) from northern Germany: Ageing, habitat and insularity. Mammalian Biology, 70(3), 157–170.

    Google Scholar 

  • Renaud, S., Alibert, P., & Auffray, J.-C. (2009a). Mandible shape in hybrid mice. Naturwissenschaften, 96, 1043–1050. doi:10.1007/s00114-009-0563-4.

    Article  CAS  PubMed  Google Scholar 

  • Renaud, S., Alibert, P., & Auffray, J.-C. (2012). Modularity as a source of new morphological variation in the mandible of hybrid mice. BMC Evolutionary Biology, 12, 141.

    Article  PubMed  PubMed Central  Google Scholar 

  • Renaud, S., Auffray, J.-C., & Michaux, J. (2006). Conserved phenotypic variation patterns, evolution along lines of least resistance, and departure due to selection in fossil rodents. Evolution, 60(8), 1701–1717.

    Article  PubMed  Google Scholar 

  • Renaud, S., Dufour, A.-B., Hardouin, E. A., Ledevin, R., & Auffray, J.-C. (2015a). Once upon multivariate analyses: When they tell several stories about biological evolution. PLoS ONE, 10(7), e0132801. doi:10.1371/journal.pone.0132801.

    Article  PubMed  PubMed Central  Google Scholar 

  • Renaud, S., Gomes Rodrigues, H., Ledevin, R., Pisanu, B., Chapuis, J.-L., & Hardouin, E. A. (2015b). Fast morphological response of house mice to anthropogenic disturbances on a Sub-Antarctic island. Biological Journal of the Linnean Society, 114, 513–526.

    Article  Google Scholar 

  • Renaud, S., Hardouin, E. A., Pisanu, B., & Chapuis, J.-L. (2013). Invasive house mice facing a changing environment on the Sub-Antarctic Guillou Island (Kerguelen Archipelago). Journal of Evolutionary Biology, 26, 612–624.

    Article  CAS  PubMed  Google Scholar 

  • Renaud, S., Pantalacci, S., & Auffray, J.-C. (2011). Differential evolvability along lines of least resistance of upper and lower molars in island mouse mice. PLoS ONE, 6(5), e18951. doi:10.1371/journal.pone.0018951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renaud, S., Pantalacci, S., Quéré, J.-P., Laudet, V., & Auffray, J.-C. (2009b). Developmental constraints revealed by co-variation within and among molar rows in two murine rodents. Evolution and Development, 11(5), 590–602. doi:10.111/j.1525-142X.2009.00365.x.

    Article  PubMed  Google Scholar 

  • Rieseberg, L. H., Archer, M. A., & Wayne, R. K. (1999). Transgressive segregation, adaptation and speciation. Heredity, 83, 363–372.

    Article  PubMed  Google Scholar 

  • Sage, R. D., Atchley, W. R., & Capanna, E. (1993). House mice as models in systematic biology. Systematic Biology, 42(4), 523–561.

    Article  Google Scholar 

  • Salazar-Ciudad, I., & Jernvall, J. (2006). A computational model of teeth and the developmental origins of morphological variation. Nature, 464, 583–586.

    Article  Google Scholar 

  • Salazar-Ciudad, I., & Marin-Riera, M. (2013). Adaptive dynamics under development-based genotype-phenotype maps. Nature, 497, 361–364.

    Article  CAS  PubMed  Google Scholar 

  • Selz, O. M., Lucek, K., Young, K. A., & Seehausen, O. (2013). Relaxed trait covariance in interspecific cichlid hybrids predicts morphological diversity in adaptive radiations. Journal of Evolutionary Biology, 27, 11–24.

    Article  PubMed  Google Scholar 

  • Stelkens, R., & Seehausen, O. (2009). Genetic distance between species predicts novel trait expression in their hybrids. Evolution, 63(4), 884–897.

    Article  PubMed  Google Scholar 

  • Valenzuela-Lamas, S., Baylac, M., Cucchi, T., & Vigne, J.-D. (2011). House mouse dispersal in Iron Age Spain: A geometric morphometrics appraisal. Biological Journal of the Linnean Society, 102, 483–497.

    Article  Google Scholar 

  • Vigne, J.-D., Cheylan, G., Granjon, L., & Auffray, J.-C. (1993). Evolution ostéométrique de Rattus rattus et de Mus musculus domesticus sur de petites îles: Comparaison de populations médiévales et actuelles des îles Lavezzi (Corse) et de Corse. Mammalia, 57(1), 85–98.

    Article  Google Scholar 

  • Whitlock, M. C., Phillips, P. C., & Fowler, K. (2002). Persistence of changes in the genetic covariance matrix after a bottleneck. Evolution, 56(10), 1968–1975.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank F. Fel-Clair, K. Manolakou, A. Orth and A. Zaegel for help and technical assistance during the rearing of the animals. The manuscript benefited from discussions with L. Pallares, S. Pantalacci and A.B. Dufour. We are indebted to the editor Benedikt Hallgrimsson and two anonymous reviewers whose highly constructive comments and careful reading of the manuscript greatly helped us to improve it. This study was supported by the ANR Bigtooth (ANR-11-BSV7-008). This is contribution ISEM 2016-200.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabrina Renaud.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Renaud, S., Alibert, P. & Auffray, JC. Impact of Hybridization on Shape, Variation and Covariation of the Mouse Molar. Evol Biol 44, 69–81 (2017). https://doi.org/10.1007/s11692-016-9391-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-016-9391-6

Keywords

Navigation