Skip to main content

Advertisement

Log in

In Vitro and In Vivo Anti-parasitic Activity of Sambucus ebulus and Feijoa sellowiana Extracts Silver Nanoparticles on Toxoplasma gondii Tachyzoites

  • Original Paper
  • Published:
Acta Parasitologica Aims and scope Submit manuscript

Abstract

Background

Current chemical treatments for toxoplasmosis have side effects, researchers are looking for herbal remedies with minimal side effects and the best effectiveness. This study aimed to evaluate the anti-toxoplasmic effects of silver nanoparticles based on Sambucus ebulus (Ag-NPs-S. ebulus) and Feijoa sellowiana (Ag-NPs-F. sellowiana) fruit extracts, in vitro and in vivo.

Methods

Vero cells were treated with different concentrations (0.5, 1, 2, 5, 10, 20, 40 μg/mL) of extracts and pyrimethamine as a positive control. Vero cells were infected with T. gondii and treated with extracts. The infection index and intracellular proliferation of T. gondii were evaluated. The survival rate of infected mice with tachyzoites of T. gondii was examined after intraperitoneal injection of the extracts at a dose of 40 mg/kg/day for 5 days after infection.

Results

The Ag-NPs-S. ebulus and Ag-NPs-F. sellowiana, almost similar to pyrimethamine, reduced proliferation index when compared to untreated group. Also, high toxoplasmicidal activity was observed with Ag-NPs-S. ebulus extract. Mice in the treatment groups of Ag-NPs-S. ebulus and pyrimethamine achieved better results in terms of survival than the others.

Conclusion

The results indicated that Ag-NPs-F. sellowiana and S. ebulus have a significant growth effect on T. gondii in vitro and in vivo. Ag-NPs-S. ebulus extract has a more lethal effect on the parasite than Ag-NPs-F. sellowiana. It is suggested that in future investigate the induction of Toxoplasma-infected cell apoptosis using nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. KarimiPourSaryazdi A, Tavakoli P, Barati M, Ghaffarifar F, DalirGhaffari A, Karimi Pour Saryazdi Y (2019) Anti-Toxoplasma effects of silver nanoparticles based on ginger extract: an in vitro study. J Arch Mil Med 7(4):1. https://doi.org/10.5812/jamm.104248

    Article  Google Scholar 

  2. Khodadadi A, Madani R, Hoghooghi Rad N, Atyabi N (2020) Development of nano-ELISA method for serological diagnosis of toxoplasmosis in mice. Arch Razi Inst 75(4):419. https://doi.org/10.22092/ari.2018.123028.1236

    Article  PubMed Central  Google Scholar 

  3. Rasekh H, Mehrabani D, Farahi MH, Masoumi SJ, Acker JP (2021) Screening of Feijoa (Acca Sellowiana (O. Berg) Burret) fruit effect on proliferation and apoptosis using bone marrow derived stem cells model. Electron J Gen Med. https://doi.org/10.29333/ejgm/8458

    Article  Google Scholar 

  4. Deng H, Cummins R, Schares G, Trevisan C, Enemark H, Waap H et al (2018) Mathematical modelling of Toxoplasma gondii transmission: a systematic review. Food Waterborne Parasitol 22:e00102. https://doi.org/10.1016/j.fawpar.2020.e00102

    Article  Google Scholar 

  5. Foroutan M, Rostami A, Majidiani H, Riahi SM, Khazaei S, Badri M et al (2018) A systematic review and meta-analysis of the prevalence of toxoplasmosis in hemodialysis patients in Iran. Epidemiol Health. https://doi.org/10.4178/epih.e2018016

    Article  PubMed  PubMed Central  Google Scholar 

  6. Montazeri M, Galeh TM, Moosazadeh M, Sarvi S, Dodangeh S, Javidnia J et al (2020) The global serological prevalence of Toxoplasma gondii in felids during the last five decades (1967–2017): a systematic review and meta-analysis. Parasit Vectors 13(1):1–10. https://doi.org/10.1186/s13071-020-3954-1

    Article  CAS  Google Scholar 

  7. Safarpour H, Cevik M, Zarean M, Barac A, Hatam-Nahavandi K, Rahimi MT et al (2020) (2020) Global status of Toxoplasma gondii infection and associated risk factors in people living with HIV. AIDS 34(3):469–474. https://doi.org/10.1097/qad.0000000000002424

    Article  PubMed  Google Scholar 

  8. Bosch-Driessen LH, Verbraak FD, Suttorp-Schulten MS, van Ruyven RL, Klok AM, Hoyng CB et al (2002) A prospective, randomized trial of pyrimethamine and azithromycin vs pyrimethamine and sulfadiazine for the treatment of ocular toxoplasmosis. Am J Ophthalmol 134(1):34–40. https://doi.org/10.1016/S0002-9394(02)01537-4

    Article  CAS  PubMed  Google Scholar 

  9. Silveira C, Belfort R Jr, Muccioli C, Holland GN, Victora CG, Horta BL et al (2002) The effect of long-term intermittent trimethoprim/sulfamethoxazole treatment on recurrences of toxoplasmic retinochoroiditis. Am J Ophthalmol 134(1):41–46. https://doi.org/10.1016/S0002-9394(02)01527-1

    Article  CAS  PubMed  Google Scholar 

  10. Schmidt DR, Hogh B, Andersen O, Hansen SH, Dalhoff K, Petersen E (2006) Treatment of infants with congenital toxoplasmosis: tolerability and plasma concentrations of sulfadiazine and pyrimethamine. Eur J Pediatr 165(1):19–25. https://doi.org/10.1007/s00431-005-1665-4

    Article  CAS  PubMed  Google Scholar 

  11. Montazeri M, Mehrzadi S, Sharif M, Sarvi S, Tanzifi A, Aghayan SA et al (2018) Drug resistance in Toxoplasma gondii. Front Microbiol 9:2587. https://doi.org/10.3389/fmicb.2018.02587

    Article  PubMed  PubMed Central  Google Scholar 

  12. Montazeri M, Mirzaee F, Daryani A, Naeimayi R, Karimabad SM, Arjmandi HK, Esmaealzadeh N, Shahani S (2020) Anti-Toxoplasma activities of the hydroalcoholic extract of some Brassicaceae species. Adv Biomed Res 9:1–5. https://doi.org/10.4103/abr.abr_206_19

    Article  CAS  Google Scholar 

  13. Hashemi Z, Shirzadi-Ahoodashti M, Ebrahimzadeh MA (2021) Antileishmanial and antibacterial activities of biologically synthesized silver nanoparticles using Alcea rosea extract (AR-AgNPs). J Water Environ Nanotechnol 6(3):265–276. https://doi.org/10.22090/jwent.2021.03.007

    Article  CAS  Google Scholar 

  14. Ebrahimzadeh MA, Hashemi Z, Mohammadyan M, Fakhar M, Mortazavi-Derazkola S (2021) In vitro cytotoxicity against human cancer cell lines (MCF-7 and AGS), antileishmanial and antibacterial activities of green synthesized silver nanoparticles using Scrophularia striata extract. Surf Interfaces 23:100963. https://doi.org/10.1016/j.surfin.2021.100963

    Article  CAS  Google Scholar 

  15. Hashemi Z, Mohammadyan M, Naderi S, Fakhar M, Biparva P, Akhtari J, Ebrahimzadeh MA (2021) Green synthesis of silver nanoparticles using Ferula persica extract (Fp-NPs): characterization, antibacterial, antileishmanial, and in vitro anticancer activities. Mater Today Commun 27:102264. https://doi.org/10.1016/j.mtcomm.2021.102264

    Article  CAS  Google Scholar 

  16. Hashemi Z, Ebrahimzadeh MA, Biparva P, Mortazavi-Derazkola S, Goli HR, Sadeghian F et al (2020) Biogenic silver and zero-valent iron nanoparticles by feijoa: biosynthesis, characterization, cytotoxic, antibacterial and antioxidant activities. Anticancer Agents Med Chem 20(14):1673–1687. https://doi.org/10.2174/1871520620666200619165910

    Article  CAS  PubMed  Google Scholar 

  17. Aghajanzadeh H, Abdolmaleki M, Ebrahimzadeh MA, Mojtabavi N, Mousavi T, Izad M (2021) Methanolic extract of Sambucus ebulus ameliorates clinical symptoms in experimental type 1 diabetes through anti-inflammatory and immunomodulatory actions. Cell J (Yakhteh) 23(4):465. https://doi.org/10.22074/cellj.2021.7287

    Article  Google Scholar 

  18. Fathi H, Ebrahimzadeh MA, Ziar A, Mohammadi H (2015) Oxidative damage induced by retching; antiemetic and neuroprotective role of Sambucus ebulus L. Cell Biol Toxicol 31(4):231–239. https://doi.org/10.1007/s10565-015-9307-8

    Article  PubMed  Google Scholar 

  19. Ghabaee DN, Ebrahimzadeh MA, Akbari J, Amiri FT (2017) Wound healing activity of Sambucus ebulus. Int J Pharm Sci Res 8(1):132–135. https://doi.org/10.13040/IJPSR.0975-8232.8(1).1000-04

    Article  CAS  Google Scholar 

  20. Rahimi-Esboei B, Ebrahimzadeh M, Gholami S, Falah-Omrani V (2013) Anti-giardial activity of Sambucus ebulus. Eur Rev Med Pharmacol Sci 17(15):2047–2050

    CAS  PubMed  Google Scholar 

  21. Gholami S, Rahimi-Esboei B, Ebrahimzadeh M, Pourhajibagher M (2013) In vitro effect of Sambucus ebulus on scolices of hydatid cysts. Eur Rev Med Pharmacol Sci 17(13):1760–1765

    CAS  PubMed  Google Scholar 

  22. Ebrahimzadeh MA, Yosefi SS, Pahlevanzadeh B, Mozafari A (2022) Investigating potential therapeutic efficacy of Sambucus ebulus fruit extract in treatment of cutaneous leishmaniasis. Adv Life Sci 9(3):334–339

    Google Scholar 

  23. Otaghvar HA, Rezapour-Nasrabad R, Ebrahimzadeh MA, Yaghoubi M, Khalatbary AR, Nasiry D, Raoofi A, Rostamzadeh A (2022) The effects of Feijoa sellowiana fruit extract on wound healing in rats: a stereological and molecular study. J Wound Care 31(Suppl 8):S36–S44. https://doi.org/10.12968/jowc.2022.31.Sup8.S36

    Article  PubMed  Google Scholar 

  24. Santos PH, Kammers JC, Silva AP, Oliveira JV, Hense H (2021) Antioxidant and antibacterial compounds from feijoa leaf extracts obtained by pressurized liquid extraction and supercritical fluid extraction. Food Chem 344:128620. https://doi.org/10.1016/j.foodchem.2020.128620

    Article  CAS  PubMed  Google Scholar 

  25. Hashemi Z, Mortazavi-Derazkola S, Biparva P, Goli HR, Sadeghian F, Kardan M, Rafiei A, Ebrahimzadeh MA (2020) Green synthesized silver nanoparticles using Feijoa sellowiana leaf extract, evaluation of their antibacterial, anticancer and antioxidant activities. Iran J Pharm Res 19(4):306–320. https://doi.org/10.22037/ijpr.2020.112523.13805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hashemi Z, Mizwari ZM, Mohammadi-Aghdam S, Mortazavi-Derazkola S, Ebrahimzadeh MA (2022) Sustainable green synthesis of silver nanoparticles using Sambucus ebulus phenolic extract (AgNPs@ SEE): optimization and assessment of photocatalytic degradation of methyl orange and their in vitro antibacterial and anticancer activity. Arab J Chem 15(1):103525. https://doi.org/10.1016/j.arabjc.2021.103525

    Article  CAS  Google Scholar 

  27. Ebrahimzadeh MA, Taheri MM, Ahmadpour E, Montazeri M, Sarvi S, Akbari M et al (2017) Anti-Toxoplasma effects of methanol extracts of Feijoa sellowiana, Quercus castaneifolia, and Allium paradoxum. J Pharmacopuncture 20(3):220. https://doi.org/10.3831/KPI.2017.20.026

    Article  PubMed  PubMed Central  Google Scholar 

  28. Barbosa BF, Gomes AO, Ferro EAV, Napolitano DR, Mineo JR, Silva NM (2012) Enrofloxacin is able to control Toxoplasma gondii infection in both in vitro and in vivo experimental models. Vet Parasitol 187(1–2):44–52. https://doi.org/10.1016/j.vetpar.2011.12.039

    Article  CAS  PubMed  Google Scholar 

  29. Hashemi Z, Shirzadi-Ahodashti M, Mortazavi-Derazkola S, Ebrahimzadeh MA (2022) Sustainable biosynthesis of metallic silver nanoparticles using barberry phenolic extract: optimization and evaluation of photocatalytic, in vitro cytotoxicity, and antibacterial activities against multidrug-resistant bacteria. Inorg Chem Commun 139:109320. https://doi.org/10.1016/j.inoche.2022.109320

    Article  CAS  Google Scholar 

  30. Shirzadi-Ahodashti M, Mizwari ZM, Hashemi Z, Rajabalipour S, Ghoreishi SM, Mortazavi-Derazkola S, Ebrahimzadeh MA (2021) Discovery of high antibacterial and catalytic activities of biosynthesized silver nanoparticles using C. fruticosus (CF-AgNPs) against multi-drug resistant clinical strains and hazardous pollutants. Environ Technol Innov 23:101607. https://doi.org/10.1016/j.eti.2021.101607

  31. Alizadeh SR, Abbastabar M, Nosratabadi M, Ebrahimzadeh MA (2023) High antimicrobial, cytotoxicity, and catalytic activities of biosynthesized selenium nanoparticles using Crocus caspius extract. Arab J Chem 16(6):104705. https://doi.org/10.1016/j.arabjc.2023.104705

    Article  CAS  Google Scholar 

  32. Da Costa-Silva TA, da Silva MC, Frazzatti-Gallina N, Pereira-Chioccola VL (2012) Toxoplasma gondii antigens: recovery analysis of tachyzoites cultivated in Vero cell maintained in serum free medium. Exp Parasitol 130(4):463–469. https://doi.org/10.1016/j.exppara.2012.01.005

    Article  PubMed  Google Scholar 

  33. Hosoda T, Mikita K, Ito M, Nagasaki H, Sakamoto M (2021) Cerebral toxoplasmosis with multiple hemorrhage lesions in an HIV infected patient: a case report and literature review. Parasitol Int 81:102280. https://doi.org/10.1016/j.parint.2020.102280

  34. Daryani A, Ebrahimzadeh MA, Sharif M, Ahmadpour E, Edalatian S, Esboei BR et al (2015) Anti-Toxoplasma activities of methanolic extract of Sambucus nigra (Caprifoliaceae) fruits and leaves. Rev Biol Trop 63(1):07–12

    Article  Google Scholar 

  35. Vergara-Duque D, Cifuentes-Yepes L, Hincapie-Riaño T, Clavijo-Acosta F, Juez-Castillo G, Valencia-Vidal B (2020) Effect of silver nanoparticles on the morphology of Toxoplasma gondii and Salmonella braenderup. J Nanotechnol. https://doi.org/10.1155/2020/9483428

    Article  Google Scholar 

  36. Athearn K, Jarnagin D, Sarkhosh A, Popenoe J, Sargent S (2021) Elderberry and elderflower (Sambucus spp): markets, establishment costs, and potential returns. EDIS 2:7

    Article  Google Scholar 

  37. Ti H, Zhuang Z, Yu Q, Wang S (2021) Progress of plant medicine derived extracts and alkaloids on modulating viral infections and inflammation. Drug Des Dev Ther 15:1385. https://doi.org/10.2147/DDDT.S299120

    Article  Google Scholar 

  38. Kiselova-Kaneva Y, Galunska B, Nikolova M, Dincheva I, Badjakov I (2022) High resolution LC-MS/MS characterization of polyphenolic composition and evaluation of antioxidant activity of Sambucus ebulus fruit tea traditionally used in Bulgaria as a functional food. Food Chem 367:130759. https://doi.org/10.1016/j.foodchem.2021.130759

    Article  CAS  PubMed  Google Scholar 

  39. Seyed Sharifi SH, Nasiry D, Mahmoudi F, Etezadpour M, Ebrahimzadeh MA (2021) Evaluation of Sambucus ebulus fruit extract in full-thickness diabetic wound healing in rats. J Mazandaran Univ Med Sci 31(200):11–25

    Google Scholar 

  40. Basile A, Conte B, Rigano D et al (2010) Antibacterial and antifungal properties of acetonic extract of Feijoa sellowiana fruits and its effect on Helicobacter pylori growth. J Med Food 13(1):189–195. https://doi.org/10.1089/jmf.2008.0301

    Article  CAS  PubMed  Google Scholar 

  41. Ebrahimzadeh MA, Hosseinimehr SJ, Hamidinia A, Jafari M (2008) Antioxidant and free radical scavenging activity of Feijoa sellowiana fruits peel and leaves. Pharmacologyonline 1:7–14

    Google Scholar 

  42. Beyhan Ö, Elmastaş M, Gedikli F (2010) Total phenolic compounds and antioxidant capacity of leaf, dry fruit and fresh fruit of feijoa (Acca sellowiana, Myrtaceae). J Med Plant Res 4(11):1065–1072

    CAS  Google Scholar 

  43. Karami M, KarimianNokabadi F, Ebrahimzadeh MA, Naghshvar F (2014) Nephroprotective effects of Feijoa sellowiana leaves extract on renal injury induced by acute dose of ecstasy (MDMA) in mice. Iran J Basic Med Sci 17(1):69–72

    PubMed  PubMed Central  Google Scholar 

  44. Karami M, Saeidnia S, Nosrati A (2013) Study of the hepatoprotective activity of methanolic extract of Feijoa sellowiana fruits against MDMA using the isolated rat liver perfusion system. Iran J Pharm Res 12(1):85–91

    PubMed  PubMed Central  Google Scholar 

  45. Mahmoudi M, Ebrahimzadeh MA, Abdi M, Arimi Y, Fathi H (2015) Antidepressant activities of Feijoa sellowiana fruit. Eur Rev Med Pharmacol Sci 19(13):2510–2513

    CAS  PubMed  Google Scholar 

  46. Mahmoudi M, Seifi S, Khan BA, Alshahrani SM, Arimi A, Allami A et al (2021) Anti-inflammatory and anti-nociceptive activities of polyphenols from Feijoa fruit and leaves. Pak J Pharm 34(4):1445–1458. https://doi.org/10.36721/PJPS.34.4.REG.1445-1448.1

    Article  CAS  Google Scholar 

  47. Horri E, Esmaeilnejad Moghadam A, Talebpour Amiri F, Ebrahimzadeh MA (2021) Protective effect of Feijoa sellowiana fruit on testicular toxicity-induced by cadmium chloride. Andrologia 53(2):e13926. https://doi.org/10.1111/and.13926

    Article  CAS  PubMed  Google Scholar 

  48. Weston RJ (2010) Bioactive products from fruit of the feijoa (Feijoa sellowiana, Myrtaceae): a review. Food Chem 121(4):923–926. https://doi.org/10.1016/j.foodchem.2010.01.047

    Article  CAS  Google Scholar 

  49. Zhang X, Jin L, Cui Z, Zhang C, Wu X, Park H et al (2016) Antiparasitic effects of oxymatrine and matrine against Toxoplasma gondii in vitro and in vivo. Exp Parasitol 165:95–102. https://doi.org/10.1016/j.exppara.2016.03.020

    Article  CAS  PubMed  Google Scholar 

  50. Alajmi RA, Al-Megrin WA, Metwally D, Al-Subaie H, Altamrah N, Barakat AM et al (2019) Anti-Toxoplasma activity of silver nanoparticles green synthesized with Phoenix dactylifera and Ziziphus spina-christi extracts which inhibits inflammation through liver regulation of cytokines in Balb/c mice. Biosci Rep 39(5):BSR20190379. https://doi.org/10.1042/BSR20190379

  51. Quan J-H, Gao FF, Haha I, Yuk J-M, Cha G-H, Chu J-Q et al (2020) Silver nanoparticle-induced apoptosis in ARPE-19 cells is inhibited by Toxoplasma gondii pre-infection through suppression of NOX4-dependent ROS generation. Int J Nanomedicine 15:3695. https://doi.org/10.2147/IJN.S244785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cerutti A, Blanchard N, Besteiro S (2020) The bradyzoite: a key developmental stage for the persistence and pathogenesis of toxoplasmosis. Pathogens 9(3):234. https://doi.org/10.3390/pathogens9030234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Said D, Elsamad L, Gohar Y (2012) Validity of silver, chitosan, and curcumin nanoparticles as anti-Giardia agents. Parasitol Res 111(2):545–554. https://doi.org/10.1007/s00436-012-2866-1

    Article  CAS  PubMed  Google Scholar 

  54. Allahverdiyev AM, Abamor ES, Bagirova M, Ustundag CB, Kaya C, Kaya F et al (2011) Antileishmanial effect of silver nanoparticles and their enhanced antiparasitic activity under ultraviolet light. Int J Nanomedicine 6:2705. https://doi.org/10.2147/IJN.S23883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the officials of the Parasitology and Mycology Research Laboratory of Mazandaran University of Medical Sciences, as well as Dr. Zahra Hashemi for their preparation of nanoparticles synthesized from S. ebulus and F. sellowiana plant extracts.

Funding

This research received no specific grant from any funding agency, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

SAH, MAE, AD and MS were involved in designing the research. AH, MS carried out the experiments. MS, SAH and TN drafted the article. SAH and AD critically revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Seyed Abdollah Hosseini.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Ethical Approval

The project was done according to the institutional animal ethics guidelines which were approved by the ethic 301 committee of Mazandaran University of Medical Sciences (MUMSEC) (Ethics No. 302 IR.MAZUMS.REC.1399.730).

Consent of Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hematizadeh, A., Ebrahimzadeh, M.A., Sarvi, S. et al. In Vitro and In Vivo Anti-parasitic Activity of Sambucus ebulus and Feijoa sellowiana Extracts Silver Nanoparticles on Toxoplasma gondii Tachyzoites. Acta Parasit. 68, 557–565 (2023). https://doi.org/10.1007/s11686-023-00689-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11686-023-00689-8

Keywords

Navigation