Skip to main content
Log in

Trichinella spiralis (Owen, 1835) Induces Increased Dystrophin Expression in Invaded Cross-striated Muscle

  • Original Paper
  • Published:
Acta Parasitologica Aims and scope Submit manuscript

Abstract

Purpose

Dystrophin and the dystrophin glycoprotein complex serve as a cytoskeletal integrator, critical for muscle membrane stability. The aim of the present study was to clarify the expression of dystrophin protein and mRNA in the skeletal muscle tissue during the muscle phase of trichinellosis in mice.

Methods

Muscle tissue was collected from mice experimentally infected with Trichinella spiralis at days 0, 14 and 40 after infection. The expression of dystrophin in the muscle tissue was investigated by immunohistochemistry with antibodies against three different domains of the protein, and the expression levels of Dys mRNA by real-time PCR.

Results

The presence of dystrophin protein was increased in the de-differentiating cytoplasm at the early stage of muscle infection and was persisting also in the mature Nurse cell harbouring the parasite. It was accompanied by significantly elevated expression of Dys mRNA at days 14 and 40 after infection.

Conclusion

Our findings indicate that dystrophin plays a role in regeneration of the muscle and in the Nurse cell formation and stability for security of the parasite survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Capó V, Despommier DD (1996) Clinical aspects of infection with Trichinella spp. Clin Microbiol Rev 9:47–54. https://doi.org/10.1128/cmr.9.1.47

    Article  PubMed  PubMed Central  Google Scholar 

  2. Despommier DD (1998) How does Trichinella spiralis make itself at home? Parasitol Today 14:318–323. https://doi.org/10.1016/s0169-4758(98)01287-3

    Article  CAS  PubMed  Google Scholar 

  3. Lapidos KA, Kakkar R, McNally EM (2004) The dystrophin glycoprotein complex. Signalling strength and integrity for the sarcolemma. Circ Res 94:1023–1031. https://doi.org/10.1161/01.RES.0000126574.61061.25

    Article  CAS  PubMed  Google Scholar 

  4. Jasmer DP (1993) Trichinella spiralis infected skeletal muscle cells arrest in G2/M cease muscle gene expression. J Cell Biol 121:785–793. https://doi.org/10.1083/jcb.121.4.785

    Article  CAS  PubMed  Google Scholar 

  5. Milcheva R, Janega P, Celec P, Petkova S, Hurniková Z, Izrael-Vlková B, Todorova K, Babál P (2019) Accumulation of α-2,6-sialoglycoproteins in the muscle sarcoplasm due to Trichinella sp. invasion. Open Life Sci 14:470–481. https://doi.org/10.1515/biol-2019-0053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cox ML, Schray CL, Luster CN, Stewart ZS, Korytko PJ, Khan KNM, Paulauskis JD, Dunstan RW (2006) Assessment of fixatives, fixation, and tissue processing on morphology and RNA integrity. Exp Mol Pathol 80:181–191. https://doi.org/10.1016/j.yexmp.2005.10.002

    Article  CAS  Google Scholar 

  7. Zarlenga DS, Chute MB, Martin A, Kapel CMO (2001) A single, multiplex PCR for differentiating all species of Trichinella. Parasite 8:S24–S26. https://doi.org/10.1051/parasite/200108s2024

    Article  CAS  PubMed  Google Scholar 

  8. Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden T (2012) Primer-Blast: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. https://doi.org/10.1186/1471-2105-13-134

    Article  Google Scholar 

  9. Zhang JD, Ruschhaupt M, Biczok R (2014) ddCt method for qRT-PCR data analysis. Retrieved October 2021 from http://bioconductor.jp/packages/2.14/bioc/vignettes/ddCt/inst/doc/rtPCR.pdf

  10. Blake DJ, Weir A, Newey SE, Davies KE (2002) Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol Rev 82:291–329. https://doi.org/10.1152/physrev.00028.2001

    Article  CAS  PubMed  Google Scholar 

  11. Hoffman EP, JrRH B, Kunkel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51:919–928. https://doi.org/10.1016/0092-8674(87)90579-4

    Article  CAS  PubMed  Google Scholar 

  12. Cox GA, Cole NM, Matsumura K, Phelps SF, Hauschka SD, Campbell KP, Faulkner JA, Chamberlain JS (1993) Overexpression of dystrophin in transgenic mdx mice eliminates dystrophic symptoms without toxicity. Nature 364:725–729. https://doi.org/10.1038/364725a0

    Article  CAS  PubMed  Google Scholar 

  13. González E, Montañez C, Ray PN, Howard PL, García-Sierra F, Mornet D, Cisneros B (2000) Alternative splicing regulates the nuclear or cytoplasmic localization of dystrophin Dp71. FEBS Let 482:209–214. https://doi.org/10.1016/s0014-5793(00)02044-5

    Article  Google Scholar 

  14. Bajanca F, Gonzales-Perez V, Gillespie SJ, Beley C, Garcia L, Theveneau E, Sear RP, Hughes SM (2015) In vivo dynamics of skeletal muscle Dystrophin in zebrafish embryos revealed by improved FRAP analysis. Elife 4:e06541. https://doi.org/10.7554/eLife.06541

    Article  PubMed  PubMed Central  Google Scholar 

  15. Babál P, Milcheva R, Petkova S, Janega P, Hurniková Z (2011) Apoptosis as the adaptation mechanism in survival of Trichinella spiralis in the host. Parasitol Res 109:997–1002. https://doi.org/10.1007/s00436-011-2343-2

    Article  PubMed  Google Scholar 

  16. Dumont NA, Wang YX, von Maltzahn J, Pasut A, Bentzinger CF, Brun CE, Rudnicki MA (2015) Dystrophin expression in muscle stem cells regulates their polarity and asymmetric division. Nat Med 21:1455–1463. https://doi.org/10.1038/nm.3990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kang YJ, Jo JO, Cho MK, Yu HS, Cha HJ, Ock MS (2012) Trichinella spiralis infection induces β-actin co-localized with thymosin β4. Vet Parasitol 187:480–485. https://doi.org/10.1016/j.vetpar.2012.01.017

    Article  CAS  PubMed  Google Scholar 

  18. Khaitlina S (2001) Functional specificity of actin isoforms. Int Rev Cytol 202:35–98. https://doi.org/10.1016/s0074-7696(01)02003-4

    Article  CAS  PubMed  Google Scholar 

  19. Bai X, Wu X, Wang X, Liu X, Song Y, Gao F, Miao Y, Yu L, Tang B, Wang X, Radu B, Vallee I, Boireau P, Wang F, Zhao Y, Liu M (2012) Inhibition of mammalian muscle differentiation by excretory secretory products of muscle larvae of Trichinella spiralis in vitro. Parasitol Res 110:2481–2490. https://doi.org/10.1007/s00436-011-2789-2

    Article  PubMed  Google Scholar 

  20. Taylor PJ, Hagen J, Faruqu FN, Al-Jamal KT, Quigley B, Beeby M, Selkirk ME, Sarkies P (2020) Trichinella spiralis secretes abundant unencapsulated small RNAs with potential effects on host gene expression. Int J Parasitol 50:697–705. https://doi.org/10.1016/j.ijpara.2020.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cachiarelli D, Incitti T, Martone J, Cesana M, Cazzella V, Santini T, Sthandier O, Bozzoni I (2011) miR-31 modulates dystrophin expression: new implications for Duchenne muscular dystrophy therapy. EMBO Rep 12:136–141. https://doi.org/10.1038/embor.2010.208

    Article  CAS  Google Scholar 

  22. Wu Z, Sofronic-Milosavljevic L, Nagano I, Takahashi Y (2008) Trichinella spiralis: nurse cell formation with emphasis on analogy to muscle cell repair. Prasites Vectors. https://doi.org/10.1186/1756-3305-1-27

    Article  Google Scholar 

  23. Milcheva R, Todorova K, Georgieva A, Petkova S (2022) The synthesis of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE), α-dystroglycan, and β-galactoside α-2,3-sialyltransferase 6 (ST3Gal6) by skeletal muscle cell as a response to infection with Trichinella spiralis. Helminthol 3:217–225. https://doi.org/10.2478/helm-2022-0027

    Article  CAS  Google Scholar 

  24. Nakamura K, Tsukamoto Y, Hijiya N, Higuchi Y, Yano S, Yokoyama S, Kumamoto T, Moriyama M (2010) Induction of GNE in myofibers after muscle injury. Pathobiol 77:191–199. https://doi.org/10.1159/000292652

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Bulgarian National Science Fund under Grant DN01/16.

Author information

Authors and Affiliations

Authors

Contributions

PB and RM—conceptualization and design of research. RM, IM, KT, VD and SP—performance of research. PB, IM, RM, KT and VD—data analysis. RM—manuscript writing. PB—improvement and final edition of manuscript.

Corresponding author

Correspondence to Rositsa Milcheva.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milcheva, R., Mečiarová, I., Todorova, K. et al. Trichinella spiralis (Owen, 1835) Induces Increased Dystrophin Expression in Invaded Cross-striated Muscle. Acta Parasit. 68, 393–399 (2023). https://doi.org/10.1007/s11686-023-00673-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11686-023-00673-2

Keywords

Navigation