Skip to main content
Log in

Extracellular vesicle-carried GTF2I from mesenchymal stem cells promotes the expression of tumor-suppressive FAT1 and inhibits stemness maintenance in thyroid carcinoma

  • Research Article
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

Through bioinformatics predictions, we identified that GTF2I and FAT1 were downregulated in thyroid carcinoma (TC). Further, Pearson’s correlation coefficient revealed a positive correlation between GTF2I expression and FAT1 expression. Therefore, we selected them for this present study, where the effects of bone marrow mesenchymal stem cell-derived EVs (BMSDs-EVs) enriched with GTF2I were evaluated on the epithelial–to–mesenchymal transition (EMT) and stemness maintenance in TC. The under-expression of GTF2I and FAT1 was validated in TC cell lines. Ectopically expressed GTF2I and FAT1 were found to augment malignant phenotypes of TC cells, EMT, and stemness maintenance. Mechanistic studies revealed that GTF2I bound to the promoter region of FAT1 and consequently upregulated its expression. MSC-EVs could shuttle GTF2I into TPC-1 cells, where GTF2I inhibited TC malignant phenotypes, EMT, and stemness maintenance by increasing the expression of FAT1 and facilitating the FAT1-mediated CDK4/FOXM1 downregulation. In vivo experiments confirmed that silencing of GTF2I accelerated tumor growth in nude mice. Taken together, our work suggests that GTF2I transferred by MSC-EVs confer antioncogenic effects through the FAT1/CDK4/FOXM1 axis and may be used as a promising biomarker for TC treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394–424

    Article  PubMed  Google Scholar 

  2. Kim J, Gosnell JE, Roman SA. Geographic influences in the global rise of thyroid cancer. Nat Rev Endocrinol 2020; 16(1): 17–29

    Article  PubMed  Google Scholar 

  3. Aleksakhina SN, Kashyap A, Imyanitov EN. Mechanisms of acquired tumor drug resistance. Biochim Biophys Acta Rev Cancer 2019; 1872(2): 188310

    Article  CAS  PubMed  Google Scholar 

  4. Bocci F, Gearhart-Serna L, Boareto M, Ribeiro M, Ben-Jacob E, Devi GR, Levine H, Onuchic JN, Jolly MK. Toward understanding cancer stem cell heterogeneity in the tumor microenvironment. Proc Natl Acad Sci USA 2019; 116(1): 148–157

    Article  CAS  PubMed  Google Scholar 

  5. Pai S, Bamodu OA, Lin YK, Lin CS, Chu PY, Chien MH, Wang LS, Hsiao M, Yeh CT, Tsai JT. CD47-SIRPα signaling induces epithelial-mesenchymal transition and cancer stemness and links to a poor prognosis in patients with oral squamous cell carcinoma. Cells 2019; 8(12): 1658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang Z, Wang ZX, Chen YX, Wu HX, Yin L, Zhao Q, Luo HY, Zeng ZL, Qiu MZ, Xu RH. Integrated analysis of single-cell and bulk RNA sequencing data reveals a pan-cancer stemness signature predicting immunotherapy response. Genome Med 2022; 14(1): 45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sanmartin MC, Borzone FR, Giorello MB, Yannarelli G, Chasseing NA. Mesenchymal stromal cell-derived extracellular vesicles as biological carriers for drug delivery in cancer therapy. Front Bioeng Biotechnol 2022; 10: 882545

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hassanzadeh A, Rahman HS, Markov A, Endjun JJ, Zekiy AO, Chartrand MS, Beheshtkhoo N, Kouhbanani MAJ, Marofi F, Nikoo M, Jarahian M. Mesenchymal stem/stromal cell-derived exosomes in regenerative medicine and cancer; overview of development, challenges, and opportunities. Stem Cell Res Ther 2021; 12(1): 297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rani S, Ryan AE, Griffin MD, Ritter T. Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications. Mol Ther 2015; 23(5): 812–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Qiu G, Zheng G, Ge M, Wang J, Huang R, Shu Q, Xu J. Mesenchymal stem cell-derived extracellular vesicles affect disease outcomes via transfer of microRNAs. Stem Cell Res Ther 2018; 9(1): 320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gurumurthy A, Wu Q, Nar R, Paulsen K, Trumbull A, Fishman RC, Brand M, Strouboulis J, Qian Z, Bungert J. TFII-I/Gtf2i and erythro-megakaryopoiesis. Front Physiol 2020; 11: 590180

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nathany S, Tripathi R, Mehta A. Gene of the month: GTF2I. J Clin Pathol 2021; 74(1): 1–4

    Article  CAS  PubMed  Google Scholar 

  13. Kim IK, Rao G, Zhao X, Fan R, Avantaggiati ML, Wang Y, Zhang YW, Giaccone G. Mutant GTF2I induces cell transformation and metabolic alterations in thymic epithelial cells. Cell Death Differ 2020; 27(7): 2263–2279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pastushenko I, Mauri F, Song Y, de Cock F, Meeusen B, Swedlund B, Impens F, Van Haver D, Opitz M, Thery M, Bareche Y, Lapouge G, Vermeersch M, Van Eycke YR, Balsat C, Decaestecker C, Sokolow Y, Hassid S, Perez-Bustillo A, Agreda-Moreno B, Rios-Buceta L, Jaen P, Redondo P, Sieira-Gil R, Millan-Cayetano JF, Sanmatrtin O, D’Haene N, Moers V, Rozzi M, Blondeau J, Lemaire S, Scozzaro S, Janssens V, De Troya M, Dubois C, Pérez-Morga D, Salmon I, Sotiriou C, Helmbacher F, Blanpain C. Fat1 deletion promotes hybrid EMT state, tumour stemness and metastasis. Nature 2021; 589(7842): 448–455

    Article  CAS  PubMed  Google Scholar 

  15. Qu N, Shi X, Zhao JJ, Guan H, Zhang TT, Wen SS, Liao T, Hu JQ, Liu WY, Wang YL, Huang S, Shi RL, Wang Y, Ji QH. Genomic and transcriptomic characterization of sporadic medullary thyroid carcinoma. Thyroid 2020; 30(7): 1025–1036

    Article  CAS  PubMed  Google Scholar 

  16. Li Z, Razavi P, Li Q, Toy W, Liu B, Ping C, Hsieh W, Sanchez-Vega F, Brown DN, Da Cruz Paula AF, Morris L, Selenica P, Eichenberger E, Shen R, Schultz N, Rosen N, Scaltriti M, Brogi E, Baselga J, Reis-Filho JS, Chandarlapaty S. Loss of the FAT1 tumor suppressor promotes resistance to CDK4/6 inhibitors via the hippo pathway. Cancer Cell 2018; 34(6): 893–905.e8

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wang X, Sun Z, Tian W, Piao C, Xie X, Zang J, Peng S, Yu X, Wang Y. S100A12 is a promising biomarker in papillary thyroid cancer. Sci Rep 2020; 10(1): 1724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rubio C, Martínez-Fernández M, Segovia C, Lodewijk I, Suarez-Cabrera C, Segrelles C, López-Calderón F, Munera-Maravilla E, Santos M, Bernardini A, García-Escudero R, Lorz C, Gómez-Rodriguez MJ, de Velasco G, Otero I, Villacampa F, Guerrero-Ramos F, Ruiz S, de la Rosa F, Domínguez-Rodríguez S, Real FX, Malats N, Castellano D, Dueñas M, Paramio JM. CDK4/6 inhibitor as a novel therapeutic approach for advanced bladder cancer independently of RB1 status. Clin Cancer Res 2019; 25(1): 390–402

    Article  CAS  PubMed  Google Scholar 

  19. Bellelli R, Castellone MD, Garcia-Rostan G, Ugolini C, Nucera C, Sadow PM, Nappi TC, Salerno P, Cantisani MC, Basolo F, Gago TA, Salvatore G, Santoro M. FOXM1 is a molecular determinant of the mitogenic and invasive phenotype of anaplastic thyroid carcinoma. Endocr Relat Cancer 2012; 19(5): 695–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Feng L, Yang B, Tang XD. Long noncoding RNA LINC00460 promotes carcinogenesis via sponging miR-613 in papillary thyroid carcinoma. J Cell Physiol 2019; 234(7): 11431–11439

    Article  CAS  PubMed  Google Scholar 

  21. Xia F, Chen Y, Jiang B, Du X, Peng Y, Wang W, Huang W, Feng T, Li X. Long noncoding RNA HOXA-AS2 promotes papillary thyroid cancer progression by regulating miR-520c-3p/S100A4 pathway. Cell Physiol Biochem 2018; 50(5): 1659–1672

    Article  CAS  PubMed  Google Scholar 

  22. Liao Z, Luo R, Li G, Song Y, Zhan S, Zhao K, Hua W, Zhang Y, Wu X, Yang C. Exosomes from mesenchymal stem cells modulate endoplasmic reticulum stress to protect against nucleus pulposus cell death and ameliorate intervertebral disc degeneration in vivo. Theranostics 2019; 9(14): 4084–4100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pritchard A, Tousif S, Wang Y, Hough K, Khan S, Strenkowski J, Chacko BK, Darley-Usmar VM, Deshane JS. Lung tumor cell-derived exosomes promote M2 macrophage polarization. Cells 2020; 9(5): 1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fang T, Lv H, Lv G, Li T, Wang C, Han Q, Yu L, Su B, Guo L, Huang S, Cao D, Tang L, Tang S, Wu M, Yang W, Wang H. Tumor-derived exosomal miR-1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer. Nat Commun 2018; 9(1): 191

    Article  PubMed  PubMed Central  Google Scholar 

  25. Shao XJ, Xiang SF, Chen YQ, Zhang N, Cao J, Zhu H, Yang B, Zhou Q, Ying MD, He QJ. Inhibition of M2-like macrophages by all-trans retinoic acid prevents cancer initiation and stemness in osteosarcoma cells. Acta Pharmacol Sin 2019; 40(10): 1343–1350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dai X, Xie Y, Dong M. Cancer-associated fibroblasts derived extracellular vesicles promote angiogenesis of colorectal adenocarcinoma cells through miR-135b-5p/FOXO1 axis. Cancer Biol Ther 2022; 23(1): 76–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang Y, Mao F, Guo L, Shi J, Wu M, Cheng S, Guo W. Tumor cells derived-extracellular vesicles transfer miR-3129 to promote hepatocellular carcinoma metastasis by targeting TXNIP. Dig Liver Dis 2021; 53(4): 474–485

    Article  CAS  PubMed  Google Scholar 

  28. Cui Y, Wang D, Xie M. Tumor-derived extracellular vesicles promote activation of carcinoma-associated fibroblasts and facilitate invasion and metastasis of ovarian cancer by carrying miR-630. Front Cell Dev Biol 2021; 9: 652322

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yang XZ, Cheng TT, He QJ, Lei ZY, Chi J, Tang Z, Liao QX, Zhang H, Zeng LS, Cui SZ. LINC01133 as ceRNA inhibits gastric cancer progression by sponging miR-106a-3p to regulate APC expression and the Wnt/β-catenin pathway. Mol Cancer 2018; 17(1): 126

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wei C, Yang C, Wang S, Shi D, Zhang C, Lin X, Liu Q, Dou R, Xiong B. Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis. Mol Cancer 2019; 18(1): 64

    Article  PubMed  PubMed Central  Google Scholar 

  31. Liang H, Yu T, Han Y, Jiang H, Wang C, You T, Zhao X, Shan H, Yang R, Yang L, Shan H, Gu Y. LncRNA PTAR promotes EMT and invasion-metastasis in serous ovarian cancer by competitively binding miR-101-3p to regulate ZEB1 expression. Mol Cancer 2018; 17(1): 119

    Article  PubMed  PubMed Central  Google Scholar 

  32. Park KS, Bandeira E, Shelke GV, Lässer C, Lötvall J. Enhancement of therapeutic potential of mesenchymal stem cell-derived extracellular vesicles. Stem Cell Res Ther 2019; 10(1): 288

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wang Y, Wang G, Ma Y, Teng J, Wang Y, Cui Y, Dong Y, Shao S, Zhan Q, Liu X. FAT1, a direct transcriptional target of E2F1, suppresses cell proliferation, migration and invasion in esophageal squamous cell carcinoma. Chin J Cancer Res 2019; 31(4): 609–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhou SW, Su BB, Feng YQ, Du XQ, Zhao H. Expression of GTF2IP23 in breast cancer and it mediated regulation of GTF2I. Chin J Oncol (Zhonghua Zhong Liu Za Zhi) 2019; 41(12): 918–922 (in Chinese)

    CAS  Google Scholar 

  35. Chen Y, Shao Z, Jiang E, Zhou X, Wang L, Wang H, Luo X, Chen Q, Liu K, Shang Z. CCL21/CCR7 interaction promotes EMT and enhances the stemness of OSCC via a JAK2/STAT3 signaling pathway. J Cell Physiol 2020; 235(9): 5995–6009

    Article  CAS  PubMed  Google Scholar 

  36. Xunian Z, Kalluri R. Biology and therapeutic potential of mesenchymal stem cell-derived exosomes. Cancer Sci 2020; 111(9): 3100–3110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tang M, Wang Q, Wang K, Wang F. Mesenchymal stem cells-originated exosomal microRNA-152 impairs proliferation, invasion and migration of thyroid carcinoma cells by interacting with DPP4. J Endocrinol Invest 2020; 43(12): 1787–1796

    Article  CAS  PubMed  Google Scholar 

  38. Hu XL, Zhai YF, Li GD, Xing JF, Yang J, Bi YH, Wang J, Shi RY. FAT1 inhibits cell proliferation of esophageal squamous cell carcinoma through regulating the expression of CDK4/CDK6/CCND1 complex. Zhonghua Zhong Liu Za Zhi 2018; 40(1): 14–20 (in Chinese)

    CAS  PubMed  Google Scholar 

  39. Anders L, Ke N, Hydbring P, Choi YJ, Widlund HR, Chick JM, Zhai H, Vidal M, Gygi SP, Braun P, Sicinski P. A systematic screen for CDK4/6 substrates links FOXM1 phosphorylation to senescence suppression in cancer cells. Cancer Cell 2011; 20(5): 620–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lopes-Ventura S, Pojo M, Matias AT, Moura MM, Marques IJ, Leite V, Cavaco BM. The efficacy of HRAS and CDK4/6 inhibitors in anaplastic thyroid cancer cell lines. J Endocrinol Invest 2019; 42(5): 527–540

    Article  CAS  PubMed  Google Scholar 

  41. Wang G, Wang X, Jin Y. LINC41410/miR-3419-5p/FOXM1 Feedback Loop Regulates Papillary Thyroid Carcinoma Cell Proliferation and Apoptosis. Cancer Biother Radiopharm 2019; 34(9): 572–580

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Shanghai Shenkang Hospital Development Center (No. SHDC12019X38).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhong Chen.

Ethics declarations

Conflicts of interest Jie Shao, Wenjuan Wang, Baorui Tao, Zihao Cai, Haixia Li, and Jinhong Chen declare that they have no competing interests.

The study was conducted under the approval of the Ethics Committee of Huashan Hospital, Fudan University (Ethical code: 2019-031). The current study was approved by the Animal Ethics Committee of Huashan Hospital, Fudan University (Ethical code: 2019 JS-102) and performed according to the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health.

Electronic supplementary material

Supplementary material, approximately 331 KB.

Table S1

shRNA sequences

Table S2

Primer sequences for reverse transcription quantitative polymerase chain reaction

Supplementary material, approximately 1.36 MB.

Table S4

Binding site of GTF2I and FAT1 promoter

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, J., Wang, W., Tao, B. et al. Extracellular vesicle-carried GTF2I from mesenchymal stem cells promotes the expression of tumor-suppressive FAT1 and inhibits stemness maintenance in thyroid carcinoma. Front. Med. 17, 1186–1203 (2023). https://doi.org/10.1007/s11684-023-0999-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-023-0999-5

Keywords

Navigation