Skip to main content
Log in

Rapamycin enhances the anti-tumor activity of cabozantinib in cMet inhibitor-resistant hepatocellular carcinoma

  • Research Article
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

Cabozantinib, mainly targeting cMet and vascular endothelial growth factor receptor 2, is the second-line treatment for patients with advanced hepatocellular carcinoma (HCC). However, the lower response rate and resistance limit its enduring clinical benefit. In this study, we found that cMet-low HCC cells showed primary resistance to cMet inhibitors, and the combination of cabozantinib and mammalian target of rapamycin (mTOR) inhibitor, rapamycin, exhibited a synergistic inhibitory effect on the in vitro cell proliferation and in vivo tumor growth of these cells. Mechanically, the combination of rapamycin with cabozantinib resulted in the remarkable inhibition of AKT, extracellular signal-regulated protein kinases, mTOR, and common downstream signal molecules of receptor tyrosine kinases; decreased cyclin D1 expression; and induced cell cycle arrest. Meanwhile, rapamycin enhanced the inhibitory effects of cabozantinib on the migration and tubule formation of human umbilical vascular endothelial cells and human growth factor-induced invasion of cMet inhibitor-resistant HCC cells under hypoxia condition. These effects were further validated in xenograft models. In conclusion, our findings uncover a potential combination therapy of cabozantinib and rapamycin to combat cabozantinib-resistant HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394–424

    PubMed  Google Scholar 

  2. Villanueva A. Hepatocellular carcinoma. N Engl J Med 2019; 380(15): 1450–1462

    Article  CAS  Google Scholar 

  3. Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A, Roberts LR. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol 2019; 16(10): 589–604

    Article  Google Scholar 

  4. Maroun CR, Rowlands T. The Met receptor tyrosine kinase: a key player in oncogenesis and drug resistance. Pharmacol Ther 2014; 142(3): 316–338

    Article  CAS  Google Scholar 

  5. Yakes FM, Chen J, Tan J, Yamaguchi K, Shi Y, Yu P, Qian F, Chu F, Bentzien F, Cancilla B, Orf J, You A, Laird AD, Engst S, Lee L, Lesch J, Chou YC, Joly AH. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol Cancer Ther 2011; 10(12): 2298–2308

    Article  CAS  Google Scholar 

  6. Abou-Alfa GK, Meyer T, Cheng AL, El-Khoueiry AB, Rimassa L, Ryoo BY, Cicin I, Merle P, Chen Y, Park JW, Blanc JF, Bolondi L, Klümpen HJ, Chan SL, Zagonel V, Pressiani T, Ryu MH, Venook AP, Hessel C, Borgman-Hagey AE, Schwab G, Kelley RK. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. N Engl J Med 2018; 379(1): 54–63

    Article  CAS  Google Scholar 

  7. Llovet JM, Montal R, Sia D, Finn RS. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat Rev Clin Oncol 2018; 15(10): 599–616

    Article  Google Scholar 

  8. Faivre S, Kroemer G, Raymond E. Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov 2006; 5(8): 671–688

    Article  CAS  Google Scholar 

  9. Chiarini F, Evangelisti C, McCubrey JA, Martelli AM. Current treatment strategies for inhibiting mTOR in cancer. Trends Pharmacol Sci 2015; 36(2): 124–135

    Article  CAS  Google Scholar 

  10. Carracedo A, Ma L, Teruya-Feldstein J, Rojo F, Salmena L, Alimonti A, Egia A, Sasaki AT, Thomas G, Kozma SC, Papa A, Nardella C, Cantley LC, Baselga J, Pandolfi PP. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest 2008; 118(9): 3065–3074

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell 2017; 168(6): 960–976

  12. Zhang Y, Gao X, Zhu Y, Kadel D, Sun H, Chen J, Luo Q, Sun H, Yang L, Yang J, Sheng Y, Zheng Y, Zhu K, Dong Q, Qin L. The dual blockade of MET and VEGFR2 signaling demonstrates pronounced inhibition on tumor growth and metastasis of hepatocellular carcinoma. J Exp Clin Cancer Res 2018; 37(1): 93

    Article  CAS  Google Scholar 

  13. Chou TC. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 2010; 70(2): 440–446

    Article  CAS  Google Scholar 

  14. Gherardi E, Birchmeier W, Birchmeier C, Vande Woude G. Targeting MET in cancer: rationale and progress. Nat Rev Cancer 2012; 12(2): 89–103

    Article  CAS  Google Scholar 

  15. D’Errico A, Fiorentino M, Ponzetto A, Daikuhara Y, Tsubouchi H, Brechot C, Scoazec JY, Grigioni WF. Liver hepatocyte growth factor does not always correlate with hepatocellular proliferation in human liver lesions: its specific receptor c-met does. Hepatology 1996; 24(1): 60–64

    PubMed  Google Scholar 

  16. Kaposi-Novak P, Lee JS, Gòmez-Quiroz L, Coulouarn C, Factor VM, Thorgeirsson SS. Met-regulated expression signature defines a subset of human hepatocellular carcinomas with poor prognosis and aggressive phenotype. J Clin Invest 2006; 116(6): 1582–1595

    Article  CAS  Google Scholar 

  17. Rimassa L, Assenat E, Peck-Radosavljevic M, Zagonel V, Pracht M, Caremoli ER, Mathurin P, Harris WP, Bolondi L, Reig M, Damjanov N, Daniele B, Porta C, Mazzaferro V, Abbadessa G, Schwartz BE, Lamar M, Goldberg TR, Santoro A, Bruix J. Second-line tivantinib (ARQ 197) vs placebo in patients (Pts) with MET-high hepatocellular carcinoma (HCC): Results of the METIV-HCC phase III trial. J Clin Oncol 2017; 35(15 suppl): 4000

    Article  Google Scholar 

  18. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144(5): 646–674

    Article  CAS  Google Scholar 

  19. Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol 2018; 15(2): 81–94

    Article  CAS  Google Scholar 

  20. Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF, Hilsenbeck SG, Pavlick A, Zhang X, Chamness GC, Wong H, Rosen J, Chang JC. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 2008; 100(9): 672–679

    Article  CAS  Google Scholar 

  21. Bruix J, da Fonseca LG, Reig M. Insights into the success and failure of systemic therapy for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2019; 16(10): 617–630

    Article  CAS  Google Scholar 

  22. Ezzoukhry Z, Louandre C, Trécherel E, Godin C, Chauffert B, Dupont S, Diouf M, Barbare JC, Mazière JC, Galmiche A. EGFR activation is a potential determinant of primary resistance of hepatocellular carcinoma cells to sorafenib. Int J Cancer 2012; 131(12): 2961–2969

    Article  CAS  Google Scholar 

  23. Chiang DY, Villanueva A, Hoshida Y, Peix J, Newell P, Minguez B, LeBlanc AC, Donovan DJ, Thung SN, Solé M, Tovar V, Alsinet C, Ramos AH, Barretina J, Roayaie S, Schwartz M, Waxman S, Bruix J, Mazzaferro V, Ligon AH, Najfeld V, Friedman SL, Sellers WR, Meyerson M, Llovet JM. Focal gains of VEGFA and molecular classification of hepatocellular carcinoma. Cancer Res 2008; 68(16): 6779–6788

    Article  CAS  Google Scholar 

  24. Hoshida Y, Nijman SM, Kobayashi M, Chan JA, Brunet JP, Chiang DY, Villanueva A, Newell P, Ikeda K, Hashimoto M, Watanabe G, Gabriel S, Friedman SL, Kumada H, Llovet JM, Golub TR. Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res 2009; 69(18): 7385–7392

    Article  CAS  Google Scholar 

  25. Boyault S, Rickman DS, de Reyniès A, Balabaud C, Rebouissou S, Jeannot E, Hérault A, Saric J, Belghiti J, Franco D, Bioulac-Sage P, Laurent-Puig P, Zucman-Rossi J. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology 2007; 45(1): 42–52

    Article  CAS  Google Scholar 

  26. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell 2012; 149(2): 274–293

    Article  CAS  Google Scholar 

  27. Asnaghi L, Bruno P, Priulla M, Nicolin A. mTOR: a protein kinase switching between life and death. Pharmacol Res 2004; 50(6): 545–549

    Article  CAS  Google Scholar 

  28. Villanueva A, Chiang DY, Newell P, Peix J, Thung S, Alsinet C, Tovar V, Roayaie S, Minguez B, Sole M, Battiston C, Van Laarhoven S, Fiel MI, Di Feo A, Hoshida Y, Yea S, Toffanin S, Ramos A, Martignetti JA, Mazzaferro V, Bruix J, Waxman S, Schwartz M, Meyerson M, Friedman SL, Llovet JM. Pivotal role of mTOR signaling in hepatocellular carcinoma. Gastroenterology 2008; 135(6): 1972–1983.e1–11

    Article  CAS  Google Scholar 

  29. Imura Y, Yasui H, Outani H, Wakamatsu T, Hamada K, Nakai T, Yamada S, Myoui A, Araki N, Ueda T, Itoh K, Yoshikawa H, Naka N. Combined targeting of mTOR and c-MET signaling pathways for effective management of epithelioid sarcoma. Mol Cancer 2014; 13(1): 185

    Article  Google Scholar 

  30. Wigerup C, Påhlman S, Bexell D. Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharmacol Ther 2016; 164: 152–169

    Article  CAS  Google Scholar 

  31. Pugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 2003; 9(6): 677–684

    Article  CAS  Google Scholar 

  32. Semenza GL. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci 2012; 33(4): 207–214

    Article  CAS  Google Scholar 

  33. You H, Ding W, Dang H, Jiang Y, Rountree CB. c-Met represents a potential therapeutic target for personalized treatment in hepatocellular carcinoma. Hepatology 2011; 54(3): 879–889

    Article  CAS  Google Scholar 

  34. Finisguerra V, Di Conza G, Di Matteo M, Serneels J, Costa S, Thompson AA, Wauters E, Walmsley S, Prenen H, Granot Z, Casazza A, Mazzone M. MET is required for the recruitment of anti-tumoural neutrophils. Nature 2015; 522(7556): 349–353

    Article  CAS  Google Scholar 

  35. Zhu C, Wei Y, Wei X. AXL receptor tyrosine kinase as a promising anti-cancer approach: functions, molecular mechanisms and clinical applications. Mol Cancer 2019; 18(1): 153

    Article  Google Scholar 

  36. Li AY, McCusker MG, Russo A, Scilla KA, Gittens A, Arensmeyer K, Mehra R, Adamo V, Rolfo C. RET fusions in solid tumors. Cancer Treat Rev 2019; 81: 101911

    Article  Google Scholar 

  37. Janku F, Yap TA, Meric-Bernstam F. Targeting the PI3K pathway in cancer: are we making headway? Nat Rev Clin Oncol 2018; 15(5): 273–291

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Key Project for Infectious Disease of China (No. 2017ZX10203207) and the National Natural Science Foundation of China (Nos. 81972737, 81930074, 91959203, and 81872356).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenwei Zhu or Lunxiu Qin.

Additional information

Compliance with ethics guidelines

Chao Gao, Shenghao Wang, Weiqing Shao, Yu Zhang, Lu Lu, Huliang Jia, Kejin Zhu, Jinhong Chen, Qiongzhu Dong, Ming Lu, Wenwei Zhu, and Lunxiu Qin declare that they have no conflict of interest. All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000 (5). Informed consent was obtained from all patients for being included in the study. All institutional and national guidelines for the care and use of laboratory animals were followed.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, C., Wang, S., Shao, W. et al. Rapamycin enhances the anti-tumor activity of cabozantinib in cMet inhibitor-resistant hepatocellular carcinoma. Front. Med. 16, 467–482 (2022). https://doi.org/10.1007/s11684-021-0869-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-021-0869-y

Keywords

Navigation