Skip to main content
Log in

Bavachin enhances NLRP3 inflammasome activation induced by ATP or nigericin and causes idiosyncratic hepatotoxicity

  • Research Article
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

Psoraleae Fructus (PF) is a well-known traditional herbal medicine in China, and it is widely used for osteoporosis, vitiligo, and other diseases in clinical settings. However, liver injury caused by PF and its preparations has been frequently reported in recent years. Our previous studies have demonstrated that PF could cause idiosyncratic drug-induced liver injury (IDILI), but the mechanism underlying its hepatotoxicity remains unclear. This paper reports that bavachin isolated from PF enhances the specific stimuli-induced activation of the NLRP3 inflammasome and leads to hepatotoxicity. Bavachin boosts the secretion of IL-1β and caspase-1 caused by ATP or nigericin but not those induced by poly(I:C), monosodium urate crystal, or intracellular lipopolysaccharide. Bavachin does not affect AIM2 or NLRC4 inflammasome activation. Mechanistically, bavachin specifically increases the production of nigericin-induced mitochondrial reactive oxygen species among the most important upstream events in the activation of the NLRP3 inflammasome. Bavachin increases the levels of aspartate transaminase and alanine aminotransferase in serum and hepatocyte injury accompanied by the secretion of IL-1β via a mouse model of lipopolysaccharide-mediated susceptibility to IDILI. These results suggest that bavachin specifically enhances the ATP- or nigericin-induced activation of the NLRP3 inflammasome. Bavachin also potentially contributes to PF-induced idiosyncratic hepatotoxicity. Moreover, bavachin and PF should be evaded among patients with diseases linked to the ATP- or nigericin-mediated activation of the NLRP3 inflammasome, which may be a dangerous factor for liver injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fontana RJ. Pathogenesis of idiosyncratic drug-induced liver injury and clinical perspectives. Gastroenterology 2014; 146(4): 914–928

    Article  CAS  PubMed  Google Scholar 

  2. Hussaini SH, Farrington EA. Idiosyncratic drug-induced liver injury: an overview. Expert Opin Drug Saf 2007; 6(6): 673–684

    Article  CAS  PubMed  Google Scholar 

  3. Deng X, Stachlewitz RF, Liguori MJ, Blomme EA, Waring JF, Luyendyk JP, Maddox JF, Ganey PE, Roth RA. Modest inflammation enhances diclofenac hepatotoxicity in rats: role of neutrophils and bacterial translocation. J Pharmacol Exp Ther 2006; 319(3): 1191–1199

    Article  CAS  PubMed  Google Scholar 

  4. Luyendyk JP, Maddox JF, Cosma GN, Ganey PE, Cockerell GL, Roth RA. Ranitidine treatment during a modest inflammatory response precipitates idiosyncrasy-like liver injury in rats. J Pharmacol Exp Ther 2003; 307(1): 9–16

    Article  CAS  PubMed  Google Scholar 

  5. Dugan CM, MacDonald AE, Roth RA, Ganey PE. A mouse model of severe halothane hepatitis based on human risk factors. J Pharmacol Exp Ther 2010; 333(2): 364–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shaw PJ, Hopfensperger MJ, Ganey PE, Roth RA. Lipopolysac-charide and trovafloxacin coexposure in mice causes idiosyncrasy-like liver injury dependent on tumor necrosis factor-alpha. Toxicol Sci 2007; 100(1): 259–266

    Article  CAS  PubMed  Google Scholar 

  7. Metushi IG, Hayes MA, Uetrecht J. Treatment of PD-1−/− mice with amodiaquine and anti-CTLA4 leads to liver injury similar to idiosyncratic liver injury in patients. Hepatology 2015; 61(4): 1332–1342

    Article  CAS  PubMed  Google Scholar 

  8. Mak A, Uetrecht J. The role of CD8 T cells in amodiaquine-induced liver injury in PD1−/− mice cotreated with anti-CTLA-4. Chem Res Toxicol 2015; 28(8): 1567–1573

    Article  CAS  PubMed  Google Scholar 

  9. Rathinam VA, Fitzgerald KA. Inflammasome complexes: emerging mechanisms and effector functions. Cell 2016; 165(4): 792–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. He Y, Hara H, Núñez G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem Sci 2016; 41(12): 1012–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lamkanfi M, Dixit VM. Mechanisms and functions of inflammasomes. Cell 2014; 157(5): 1013–1022

    Article  CAS  PubMed  Google Scholar 

  12. Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR, Latz E, Fitzgerald KA. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 2009; 458(7237): 514–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rauch I, Deets KA, Ji DX, von Moltke J, Tenthorey JL, Lee AY, Philip NH, Ayres JS, Brodsky IE, Gronert K, Vance RE. NAIP-NLRC4 inflammasomes coordinate intestinal epithelial cell expulsion with eicosanoid and IL-18 release via activation of caspase-1 and -8. Immunity 2017; 46(4): 649–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu J, Berthier CC, Kahlenberg JM. Enhanced inflammasome activity in systemic lupus erythematosus is mediated via type I interferon-induced up-regulation of interferon regulatory factor 1. Arthritis Rheumatol 2017; 69(9): 1840–1849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vande Walle L, Van Opdenbosch N, Jacques P, Fossoul A, Verheugen E, Vogel P, Beyaert R, Elewaut D, Kanneganti TD, van Loo G, Lamkanfi M. Negative regulation of the NLRP3 inflammasome by A20 protects against arthritis. Nature 2014; 512(7512): 69–73

    Article  PubMed  CAS  Google Scholar 

  16. Goldberg EL, Asher JL, Molony RD, Shaw AC, Zeiss CJ, Wang C, Morozova-Roche LA, Herzog RI, Iwasaki A, Dixit VD. β-hydroxybutyrate deactivates neutrophil NLRP3 inflammasome to relieve gout flares. Cell Rep 2017; 18(9): 2077–2087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wen H, Ting JP, O’Neill LA. A role for the NLRP3 inflammasome in metabolic diseases—did Warburg miss inflammation? Nat Immunol 2012; 13(4): 352–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, Griep A, Axt D, Remus A, Tzeng TC, Gelpi E, Halle A, Korte M, Latz E, Golenbock DT. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 2013; 493(7434): 674–678

    Article  CAS  PubMed  Google Scholar 

  19. Sutterwala FS, Haasken S, Cassel SL. Mechanism of NLRP3 inflammasome activation. Ann N Y Acad Sci 2014; 1319(1): 82–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Szabo G, Csak T. Inflammasomes in liver diseases. J Hepatol 2012; 57(3): 642–654

    Article  CAS  PubMed  Google Scholar 

  21. Kato R, Uetrecht J. Supernatant from hepatocyte cultures with drugs that cause idiosyncratic liver injury activates macrophage inflammasomes. Chem Res Toxicol 2017; 30(6): 1327–1332

    Article  CAS  PubMed  Google Scholar 

  22. Wang Z, Xu G, Zhan X, Liu Y, Gao Y, Chen N, Guo Y, Li R, He T, Song X, Niu M, Wang J, Bai Z, Xiao X. Carbamazepine promotes specific stimuli-induced NLRP3 inflammasome activation and causes idiosyncratic liver injury in mice. Arch Toxicol 2019; 93(12): 3585–3599

    Article  CAS  PubMed  Google Scholar 

  23. Calitz C, du Plessis L, Gouws C, Steyn D, Steenekamp J, Muller C, Hamman S. Herbal hepatotoxicity: current status, examples, and challenges. Expert Opin Drug Metab Toxicol 2015; 11(10): 1551–1565

    Article  CAS  PubMed  Google Scholar 

  24. He J, Li X, Wang Z, Bennett S, Chen K, Xiao Z, Zhan J, Chen S, Hou Y, Chen J, Wang S, Xu J, Lin D. Therapeutic anabolic and anticatabolic benefits of natural Chinese medicines for the treatment of osteoporosis. Front Pharmacol 2019; 10: 1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gianfaldoni S, Wollina U, Tirant M, Tchernev G, Lotti J, Satolli F, Rovesti M, França K, Lotti T. Herbal compounds for the treatment of vitiligo: a review. Open Access Maced J Med Sci 2018; 6(1): 203–207

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China. 2015 edition. Part 1. Beijing: China Medical Science Press, 2015 (in Chinese)

    Google Scholar 

  27. Nam SW, Baek JT, Lee DS, Kang SB, Ahn BM, Chung KW. A case of acute cholestatic hepatitis associated with the seeds of Psoralea corylifolia (Boh-Gol-Zhee). Clin Toxicol (Phila) 2005; 43(6): 589–591

    Article  Google Scholar 

  28. Gao Y, Wang Z, Tang J, Liu X, Shi W, Qin N, Wang X, Pang Y, Li R, Zhang Y, Wang J, Niu M, Bai Z, Xiao X. New incompatible pair of TCM: Epimedii Folium combined with Psoraleae Fructus induces idiosyncratic hepatotoxicity under immunological stress conditions. Front Med 2020; 14(1): 68–80

    Article  PubMed  Google Scholar 

  29. Song N, Liu ZS, Xue W, Bai ZF, Wang QY, Dai J, Liu X, Huang YJ, Cai H, Zhan XY, Han QY, Wang H, Chen Y, Li HY, Li AL, Zhang XM, Zhou T, Li T. NLRP3 phosphorylation is an essential priming event for inflammasome activation. Mol Cell 2017; 68(1): 185–197. e6

    Article  CAS  PubMed  Google Scholar 

  30. He H, Jiang H, Chen Y, Ye J, Wang A, Wang C, Liu Q, Liang G, Deng X, Jiang W, Zhou R. Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity. Nat Commun 2018; 9(1): 2550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Mariathasan S, Weiss DS, Newton K, McBride J, O’Rourke K, Roose-Girma M, Lee WP, Weinrauch Y, Monack DM, Dixit VM. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 2006; 440(7081): 228–232

    Article  CAS  PubMed  Google Scholar 

  32. Martinon F, Pétrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 2006; 440(7081): 237–241

    Article  CAS  PubMed  Google Scholar 

  33. Kayagaki N, Warming S, Lamkanfi M, Vande Walle L, Louie S, Dong J, Newton K, Qu Y, Liu J, Heldens S, Zhang J, Lee WP, Roose-Girma M, Dixit VM. Non-canonical inflammasome activation targets caspase-11. Nature 2011; 479(7371): 117–121

    Article  CAS  PubMed  Google Scholar 

  34. Kayagaki N, Wong MT, Stowe IB, Ramani SR, Gonzalez LC, Akashi-Takamura S, Miyake K, Zhang J, Lee WP, Muszyński A, Forsberg LS, Carlson RW, Dixit VM. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 2013; 341(6151): 1246–1249

    Article  CAS  PubMed  Google Scholar 

  35. Dick MS, Sborgi L, Rühl S, Hiller S, Broz P. ASC filament formation serves as a signal amplification mechanism for inflammasomes. Nat Commun 2016; 7(1): 11929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hornung V, Latz E. Critical functions of priming and lysosomal damage for NLRP3 activation. Eur J Immunol 2010; 40(3): 620–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Muñoz-Planillo R, Kuffa P, Martínez-Colón G, Smith BL, Rajendiran TM, Núñez G. K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 2013; 38(6): 1142–1153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Roth RA, Ganey PE. Animal models of idiosyncratic drug-induced liver injury—current status. Crit Rev Toxicol 2011; 41(9): 723–739

    Article  CAS  PubMed  Google Scholar 

  39. He Y, Hara H, Núñez G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem Sci 2016; 41(12): 1012–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Coll RC, Robertson AA, Chae JJ, Higgins SC, Muñoz-Planillo R, Inserra MC, Vetter I, Dungan LS, Monks BG, Stutz A, Croker DE, Butler MS, Haneklaus M, Sutton CE, Núñez G, Latz E, Kastner DL, Mills KH, Masters SL, Schroder K, Cooper MA, O’Neill LA. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med 2015; 21(3): 248–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. China Food And Drug Administration. Alert to liver damage caused by Zhuangguguanjiewan pills. Chin Community Doctors (Zhongguo She Qu Yi Shi) 2009; 25(374): 21 (in Chinese)

    Google Scholar 

  42. Li W, Peng DB. Analysis of adverse reactions cases of Xianlinggubao capsule. Chin J Pharmacovigilance (Zhongguo Yao Wu Jing Jie) 2011; 8(9): 555–556 (in Chinese)

    CAS  Google Scholar 

  43. Teschke R, Bahre R. Severe hepatotoxicity by Indian Ayurvedic herbal products: a structured causality assessment. Ann Hepatol 2009; 8(3): 258–266

    Article  PubMed  Google Scholar 

  44. Scott CL, Zheng F, De Baetselier P, Martens L, Saeys Y, De Prijck S, Lippens S, Abels C, Schoonooghe S, Raes G, Devoogdt N, Lambrecht BN, Beschin A, Guilliams M. Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells. Nat Commun 2016; 7(1): 10321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Krenkel O, Tacke F. Liver macrophages in tissue homeostasis and disease. Nat Rev Immunol 2017; 17(5): 306–321

    Article  CAS  PubMed  Google Scholar 

  46. Tacke F. Targeting hepatic macrophages to treat liver diseases. J Hepatol 2017; 66(6): 1300–1312

    Article  CAS  PubMed  Google Scholar 

  47. Ju C, Tacke F. Hepatic macrophages in homeostasis and liver diseases: from pathogenesis to novel therapeutic strategies. Cell Mol Immunol 2016; 13(3): 316–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li J, Zhao J, Xu M, Li M, Wang B, Qu X, Yu C, Hang H, Xia Q, Wu H, Sun X, Gu J, Kong X. Blocking GSDMD processing in innate immune cells but not in hepatocytes protects hepatic ischemia-reperfusion injury. Cell Death Dis 2020; 11(4): 244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Ko M S, Yun J Y, Baek I J, Jang J E, Hwang J J, Lee S E, Heo S H, Bader D A, Lee C H, Han J, Moon J S, Lee J M, Hong E G, Lee I K, Kim S W, Park J Y, Hartig S M, Kang U J, Moore D D, Koh E H, Lee K U. Mitophagy deficiency increases NLRP3 to induce brown fat dysfunction in mice. Autophagy 2020; [Epub ahead of print] doi: https://doi.org/10.1080/15548627.2020.1753002

  50. Yang G, Jang JH, Kim SW, Han SH, Ma KH, Jang JK, Kang HC, Cho YY, Lee HS, Lee JY. Sweroside prevents non-alcoholic steatohepatitis by suppressing activation of the NLRP3 inflammasome. Int J Mol Sci 2020; 21(8): 2790

    Article  CAS  PubMed Central  Google Scholar 

  51. Guo H, Callaway JB, Ting JP. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med 2015; 21(7): 677–687

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Szabo G, Petrasek J. Inflammasome activation and function in liver disease. Nat Rev Gastroenterol Hepatol 2015; 12(7): 387–400

    Article  CAS  PubMed  Google Scholar 

  53. Mak A, Uetrecht J. The combination of anti-CTLA-4 and PD1−/− mice unmasks the potential of isoniazid and nevirapine to cause liver injury. Chem Res Toxicol 2015; 28(12): 2287–2291

    Article  CAS  PubMed  Google Scholar 

  54. Boaru SG, Borkham-Kamphorst E, Van de Leur E, Lehnen E, Liedtke C, Weiskirchen R. NLRP3 inflammasome expression is driven by NF-κB in cultured hepatocytes. Biochem Biophys Res Commun 2015; 458(3): 700–706

    Article  CAS  PubMed  Google Scholar 

  55. Misawa T, Takahama M, Kozaki T, Lee H, Zou J, Saitoh T, Akira S. Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nat Immunol 2013; 14(5): 454–460

    Article  CAS  PubMed  Google Scholar 

  56. O’Neill LA. Cardiolipin and the Nlrp3 inflammasome. Cell Metab 2013; 18(5): 610–612

    Article  PubMed  CAS  Google Scholar 

  57. Iyer SS, He Q, Janczy JR, Elliott EI, Zhong Z, Olivier AK, Sadler JJ, Knepper-Adrian V, Han R, Qiao L, Eisenbarth SC, Nauseef WM, Cassel SL, Sutterwala FS. Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation. Immunity 2013; 39(2): 311–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Goldman SJ, Taylor R, Zhang Y, Jin S. Autophagy and the degradation of mitochondria. Mitochondrion 2010; 10(4): 309–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature 2011; 469(7329): 221–225

    Article  CAS  PubMed  Google Scholar 

  60. Shimada K, Crother TR, Karlin J, Dagvadorj J, Chiba N, Chen S, Ramanujan VK, Wolf AJ, Vergnes L, Ojcius DM, Rentsendorj A, Vargas M, Guerrero C, Wang Y, Fitzgerald KA, Underhill DM, Town T, Arditi M. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 2012; 36(3): 401–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bauernfeind F, Bartok E, Rieger A, Franchi L, Núñez G, Hornung V. Cutting edge: reactive oxygen species inhibitors block priming, but not activation, of the NLRP3 inflammasome. J Immunol 2011; 187(2): 613–617

    Article  CAS  PubMed  Google Scholar 

  62. Yang Y, Tang X, Hao F, Ma Z, Wang Y, Wang L, Gao Y. Bavachin induces apoptosis through mitochondrial regulated ER stress pathway in HepG2 cells. Biol Pharm Bull 2018; 41(2): 198–207

    Article  CAS  PubMed  Google Scholar 

  63. Yuan Z, Hasnat M, Liang P, Yuan Z, Zhang H, Sun L, Zhang L, Jiang Z. The role of inflammasome activation in triptolide-induced acute liver toxicity. Int Immunopharmacol 2019; 75: 105754

    Article  CAS  PubMed  Google Scholar 

  64. Sun W, Zeng C, Liu S, Fu J, Hu L, Shi Z, Yue D, Ren Z, Zhong Z, Zuo Z, Cao S, Peng G, Deng J, Hu Y. Ageratina adenophora induces mice hepatotoxicity via ROS-NLRP3-mediated pyroptosis. Sci Rep 2018; 8(1): 16032

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowldgements

This work has been supported by the Beijing Nova Program (No. Z181100006218001), the National Natural Science Foundation of China (Nos. 81874368, 81630100, 81903891, and 81573676), the National Science and Technology Major Project “Key New Drug Creation and Manufacturing Program” (Nos. 2017ZX09301022 and 2018ZX09101002-001-002), and the Innovation Groups of the National Natural Science Foundation of China (No. 81721002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haiping Zhao, Xiaohe Xiao or Zhaofang Bai.

Additional information

Compliance with ethics guidelines

Nan Qin, Guang Xu, Yan Wang, Xiaoyan Zhan, Yuan Gao, Zhilei Wang, Shubin Fu, Wei Shi, Xiaorong Hou, Chunyu Wang, Ruisheng Li, Yan Liu, Jiabo Wang, Haiping Zhao, Xiaohe Xiao, and Zhaofang Bai declare that they have no conflict of interest. This study was ratified by the Experimental Animal Center of the Fifth Medical Centre, Chinese PLA General Hospital in Beijing, China. Approval for the animal experimental research was in accordance with the ethical standards of the Ethics Committee in the Fifth Medical Centre, Chinese PLA General Hospital.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, N., Xu, G., Wang, Y. et al. Bavachin enhances NLRP3 inflammasome activation induced by ATP or nigericin and causes idiosyncratic hepatotoxicity. Front. Med. 15, 594–607 (2021). https://doi.org/10.1007/s11684-020-0809-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-020-0809-2

Keywords

Navigation