Skip to main content
Log in

Macro and micro structures in the dorsal anterior cingulate cortex contribute to individual differences in self-monitoring

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Individual differences in self-monitoring, which are the capability to adjust behavior to adapt to social situations, influence a wide range of social behaviors. However, understanding of focal differences in brain structures related to individual self-monitoring is minimal, particularly when micro and macro structures are considered simultaneously. The present study investigates the relationship between self-monitoring and brain structure in a relatively large sample of young adults. Voxel-based morphometry (VBM) revealed a significant positive correlation between self-monitoring and gray matter volume in the dorsal cingulate anterior cortex (dACC), dorsal lateral prefrontal cortex (DLPFC), and bilateral ventral striatum (VS). Further analysis revealed a significant negative correlation between self-monitoring and white matter (WM) integrity, as indexed by fractional anisotropy (FA) in the anterior cingulum (ACG) bundle. Moreover, there was a significant positive correlation between self-monitoring and mean radius diffusion (RD). These results shed light on the structural neural basis of variation in self-monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage, 38(1), 95–113.

    Article  PubMed  Google Scholar 

  • Baumeister, R. F., & Twenge, J. M. (2003). The social self. Handbook of psychology.

  • Beaulieu, C., & Allen, P. S. (1994). Determinants of anisotropic water diffusion in nerves. Magnetic Resonance in Medicine, 31(4), 394–400.

    Article  CAS  PubMed  Google Scholar 

  • Bechara, A., Damasio, H., Tranel, D., & Anderson, S. W. (1998). Dissociation of working memory from decision making within the human prefrontal cortex. The Journal of Neuroscience, 18(1), 428–437.

    CAS  PubMed  Google Scholar 

  • Beer, J. S., John, O. P., Scabini, D., & Knight, R. T. (2006). Orbitofrontal cortex and social behavior: integrating self-monitoring and emotion-cognition interactions. Journal of Cognitive Neuroscience, 18(6), 871–879.

    Article  PubMed  Google Scholar 

  • Bland, J. M., & Altman, D. G. (1995). Multiple significance tests: the Bonferroni method. BMJ, 310(6973), 170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bono, J. E., & Vey, M. A. (2007). Personality and emotional performance: extraversion, neuroticism, and self-monitoring. Journal of Occupational Health Psychology, 12(2), 177.

    Article  PubMed  Google Scholar 

  • Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108(3), 624.

    Article  CAS  PubMed  Google Scholar 

  • Brown, J. D., Collins, R. L., & Schmidt, G. W. (1988). Self-esteem and direct versus indirect forms of self-enhancement. Journal of Personality and Social Psychology, 55(3), 445.

    Article  Google Scholar 

  • Cabeza, R., Grady, C. L., Nyberg, L., McIntosh, A. R., Tulving, E., Kapur, S., & Craik, F. I. (1997). Age-related differences in neural activity during memory encoding and retrieval: a positron emission tomography study. The Journal of Neuroscience, 17(1), 391–400.

    CAS  PubMed  Google Scholar 

  • Caldwell, D. F., & O’Reilly, C. A. (1982). Boundary spanning and individual performance: the impact of self-monitoring. Journal of Applied Psychology, 67(1), 124.

    Article  Google Scholar 

  • Carter, C. S., Macdonald, A. M., Botvinick, M., Ross, L. L., Stenger, V. A., Noll, D., & Cohen, J. D. (2000). Parsing executive processes: strategic vs. evaluative functions of the anterior cingulate cortex. Proceedings of the National Academy of Sciences, 97(4), 1944–1948.

    Article  CAS  Google Scholar 

  • Carter, C. S., MacDonald, A. W., Ross, L. L., & Stenger, V. A. (2001). Anterior cingulate cortex activity and impaired self-monitoring of performance in patients with schizophrenia: an event-related fMRI study. American Journal of Psychiatry, 158(9), 1423–1428.

    Article  CAS  PubMed  Google Scholar 

  • Catani, M., & Thiebaut de Schotten, M. (2008). A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex, 44(8), 1105–1132.

    Article  PubMed  Google Scholar 

  • Cohen, J. D., Botvinick, M., & Carter, C. S. (2000). Anterior cingulate and prefrontal cortex: who’s in control? Nature Neuroscience, 3, 421–423.

    Article  CAS  PubMed  Google Scholar 

  • Colzato, L. S., Bajo, M. T., van den Wildenberg, W., Paolieri, D., Nieuwenhuis, S., la Heij, W., & Hommel, B. (2008). How does bilingualism improve executive control? A comparison of active and reactive inhibition mechanisms. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34(2), 302.

    PubMed  Google Scholar 

  • Croxson, P. L., Johansen-Berg, H., Behrens, T. E., Robson, M. D., Pinsk, M. A., Gross, C. G., & Rushworth, M. F. (2005). Quantitative investigation of connections of the prefrontal cortex in the human and macaque using probabilistic diffusion tractography. The Journal of Neuroscience, 25(39), 8854–8866.

    Article  CAS  PubMed  Google Scholar 

  • Cui, Z., Zhong, S., Xu, P., He, Y., & Gong, G. (2013). PANDA: a pipeline toolbox for analyzing brain diffusion images. Frontiers in human neuroscience, 7.

  • D’Argembeau, A., Collette, F., van der Linden, M., Laureys, S., del Fiore, G., Degueldre, C., & Salmon, E. (2005). Self-referential reflective activity and its relationship with rest: a PET study. NeuroImage, 25(2), 616–624.

    Article  PubMed  Google Scholar 

  • Davis, S. W., Dennis, N. A., Buchler, N. G., White, L. E., Madden, D. J., & Cabeza, R. (2009). Assessing the effects of age on long white matter tracts using diffusion tensor tractography. NeuroImage, 46(2), 530–541.

    Article  PubMed  PubMed Central  Google Scholar 

  • Delgado, M., Stenger, V., & Fiez, J. (2004). Motivation-dependent responses in the human caudate nucleus. Cerebral Cortex, 14(9), 1022–1030.

    Article  CAS  PubMed  Google Scholar 

  • Devinsky, O., Morrell, M. J., & Vogt, B. A. (1995). REVIEW ARTICLE Contributions of anterior cingulate cortex to behaviour. Brain, 118(1), 279–306.

    Article  PubMed  Google Scholar 

  • Dubois, J., Dehaene‐Lambertz, G., Perrin, M., Mangin, J. F., Cointepas, Y., Duchesnay, E., & Hertz Pannier, L. (2008). Asynchrony of the early maturation of white matter bundles in healthy infants: quantitative landmarks revealed noninvasively by diffusion tensor imaging. Human Brain Mapping, 29(1), 14–27.

    Article  PubMed  Google Scholar 

  • Egner, T., & Hirsch, J. (2005). Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information. Nature Neuroscience, 8(12), 1784–1790.

    Article  CAS  PubMed  Google Scholar 

  • Elliott, R., Friston, K. J., & Dolan, R. J. (2000). Dissociable neural responses in human reward systems. The Journal of Neuroscience, 20(16), 6159–6165.

    CAS  PubMed  Google Scholar 

  • Fellows, L. K., & Farah, M. J. (2005). Is anterior cingulate cortex necessary for cognitive control? Brain, 128(4), 788–796.

    Article  PubMed  Google Scholar 

  • Fornito, A. (2004). Individual differences in anterior cingulate/paracingulate morphology are related to executive functions in healthy males. Cerebral Cortex, 14(4), 424–431. doi:10.1093/cercor/bhh004.

    Article  PubMed  Google Scholar 

  • Fornito, A., Whittle, S., Wood, S. J., Velakoulis, D., Pantelis, C., & Yucel, M. (2006). The influence of sulcal variability on morphometry of the human anterior cingulate and paracingulate cortex. [Research Support, Non-U.S. Gov’t]. NeuroImage, 33(3), 843–854. doi:10.1016/j.neuroimage.2006.06.061.

    Article  PubMed  Google Scholar 

  • Gangestad, S., & Snyder, M. (1985). “ To carve nature at its joints”: on the existence of discrete classes in personality. Psychological Review, 92(3), 317.

    Article  Google Scholar 

  • Gangestad, S. W., & Snyder, M. (1991). Taxonomic analysis redux: some statistical considerations for testing a latent class model.

  • Gangestad, S. W., & Snyder, M. (2000). Self-monitoring: appraisal and reappraisal. Psychological Bulletin, 126(4), 530.

    Article  CAS  PubMed  Google Scholar 

  • Glenn, O. A., Henry, R. G., Berman, J. I., Chang, P. C., Miller, S. P., Vigneron, D. B., & Barkovich, A. J. (2003). DTI‐based three‐dimensional tractography detects differences in the pyramidal tracts of infants and children with congenital hemiparesis. Journal of Magnetic Resonance Imaging, 18(6), 641–648.

    Article  PubMed  Google Scholar 

  • Goffman, E. (1956). Embarrassment and social organization. American Journal of Sociology, 264–271.

  • Good, C. D., Johnsrude, I. S., Ashburner, J., Henson, R. N., Fristen, K., & Frackowiak, R. S. (2002). A voxel-based morphometric study of ageing in 465 normal adult human brains. Paper presented at the Biomedical Imaging, 2002. 5th IEEE EMBS International Summer School on.

  • Gusnard, D. A., & Raichle, M. E. (2001). Searching for a baseline: functional imaging and the resting human brain. Nature Reviews Neuroscience, 2(10), 685–694.

    Article  CAS  PubMed  Google Scholar 

  • Haruno, M., Kuroda, T., Doya, K., Toyama, K., Kimura, M., Samejima, K., & Kawato, M. (2004). A neural correlate of reward-based behavioral learning in caudate nucleus: a functional magnetic resonance imaging study of a stochastic decision task. The Journal of Neuroscience, 24(7), 1660–1665.

    Article  CAS  PubMed  Google Scholar 

  • Hayasaka, S., Phan, K. L., Liberzon, I., Worsley, K. J., & Nichols, T. E. (2004). Nonstationary cluster-size inference with random field and permutation methods. NeuroImage, 22(2), 676–687.

    Article  PubMed  Google Scholar 

  • Heatherton, T. F. (2011a). Building a social brain. Social neuroscience: toward understanding the underpinnings of the social mind, 274-283.

  • Heatherton, T. F. (2011b). Neuroscience of self and self-regulation. Annual Review of Psychology, 62, 363.

    Article  PubMed  PubMed Central  Google Scholar 

  • Heatherton, T., & Krendi, A. (2009). Social emotion: neuroimaging. Encyclopedia of Neuroscience, 9, 35–39.

    Article  Google Scholar 

  • Hiscock, M., Inch, R., Jacek, C., Hiscock-Kalil, C., & Kalil, K. M. (1994). Is there a sex difference in human laterality? I. An exhaustive survey of auditory laterality studies from six neuropsychology journals. Journal of Clinical and Experimental Neuropsychology, 16(3), 423–435.

    Article  CAS  PubMed  Google Scholar 

  • Huster, R. J., Westerhausen, R., Kreuder, F., Schweiger, E., & Wittling, W. (2007). Morphologic asymmetry of the human anterior cingulate cortex. NeuroImage, 34(3), 888–895.

    Article  PubMed  Google Scholar 

  • Huster, R. J., Westerhausen, R., Kreuder, F., Schweiger, E., & Wittling, W. (2009). Hemispheric and gender related differences in the midcingulum bundle: a DTI study. Human Brain Mapping, 30(2), 383–391.

    Article  PubMed  Google Scholar 

  • Huster, R. J., Enriquez-Geppert, S., Pantev, C., & Bruchmann, M. (2014). Variations in midcingulate morphology are related to ERP indices of cognitive control. Brain Structure and Function, 219(1), 49–60.

    Article  PubMed  Google Scholar 

  • Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W., & Smith, S. M. (2012). Fsl. NeuroImage, 62(2), 782–790.

    Article  PubMed  Google Scholar 

  • Kanai, R., & Rees, G. (2011). The structural basis of inter-individual differences in human behaviour and cognition. Nature Reviews Neuroscience, 12(4), 231–242.

    Article  CAS  PubMed  Google Scholar 

  • Kerns, J. G., Cohen, J. D., MacDonald, A. W., Cho, R. Y., Stenger, V. A., & Carter, C. S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science, 303(5660), 1023–1026.

    Article  CAS  PubMed  Google Scholar 

  • Konishi, S., Nakajima, K., Uchida, I., Kikyo, H., Kameyama, M., & Miyashita, Y. (1999). Common inhibitory mechanism in human inferior prefrontal cortex revealed by event-related functional MRI. Brain, 122(5), 981–991.

    Article  PubMed  Google Scholar 

  • Krendl, A. C., & Heatherton, T. F. (2009). Self versus Others/Self‐Regulation. Handbook of Neuroscience for the Behavioral Sciences.

  • Lhermitte, F. (1986). Human autonomy and the frontal lobes. Part II: patient behavior in complex and social situations: the “environmental dependency syndrome”. Annals of Neurology, 19(4), 335–343.

    Article  CAS  PubMed  Google Scholar 

  • Li, H., Li, W., Wei, D., Chen, Q., Jackson, T., Zhang, Q., & Qiu, J. (2014). Examining brain structures associated with perceived stress in a large sample of young adults via voxel-based morphometry. NeuroImage, 92, 1–7.

    Article  PubMed  Google Scholar 

  • MacDonald, A. W., Cohen, J. D., Stenger, V. A., & Carter, C. S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science, 288(5472), 1835–1838.

    Article  CAS  PubMed  Google Scholar 

  • Mathalon, D. H., Jorgensen, K. W., Roach, B. J., & Ford, J. M. (2009). Error detection failures in schizophrenia: ERPs and FMRI. International Journal of Psychophysiology, 73(2), 109–117.

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller, R. S., & Leary, M. R. (1992). Social sources and interactive functions of emotion: The case of embarrassment.

  • Moran, J. M., Lee, S. M., & Gabrieli, J. D. (2011). Dissociable neural systems supporting knowledge about human character and appearance in ourselves and others. Journal of Cognitive Neuroscience, 23(9), 2222–2230.

    Article  PubMed  Google Scholar 

  • Mori, S., Oishi, K., Jiang, H., Jiang, L., Li, X., Akhter, K., & Woods, R. (2008). Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. NeuroImage, 40(2), 570–582.

    Article  PubMed  PubMed Central  Google Scholar 

  • Naccache, L., Dehaene, S., Cohen, L., Habert, M.-O., Guichart-Gomez, E., Galanaud, D., & Willer, J.-C. (2005). Effortless control: executive attention and conscious feeling of mental effort are dissociable. Neuropsychologia, 43(9), 1318–1328.

    Article  PubMed  Google Scholar 

  • Northoff, G., & Bermpohl, F. (2004). Cortical midline structures and the self. Trends in Cognitive Sciences, 8(3), 102–107.

    Article  PubMed  Google Scholar 

  • Northoff, G., Heinzel, A., de Greck, M., Bermpohl, F., Dobrowolny, H., & Panksepp, J. (2006). Self-referential processing in our brain—a meta-analysis of imaging studies on the self. NeuroImage, 31(1), 440–457.

    Article  PubMed  Google Scholar 

  • Perrine, N. E., & Aloise-Young, P. A. (2004). The role of self-monitoring in adolescents’ susceptibility to passive peer pressure. Personality and Individual Differences, 37(8), 1701–1716.

    Article  Google Scholar 

  • Posner, M. I., & DiGirolamo, G. J. (1998). Executive attention: conflict, target detection, and cognitive control.

  • Prigatano, G. P. (1991). Disturbances of self-awareness of deficit after traumatic brain injury. Awareness of deficit after brain injury: Clinical and theoretical issues, 111–126.

  • Ridgway, G. R., Omar, R., Ourselin, S., Hill, D. L., Warren, J. D., & Fox, N. C. (2009). Issues with threshold masking in voxel-based morphometry of atrophied brains. NeuroImage, 44(1), 99–111.

    Article  PubMed  Google Scholar 

  • Rushworth, M., Behrens, T., Rudebeck, P., & Walton, M. (2007). Contrasting roles for cingulate and orbitofrontal cortex in decisions and social behaviour. Trends in Cognitive Sciences, 11(4), 168–176.

    Article  CAS  PubMed  Google Scholar 

  • Schlenker, B. R., & Leary, M. R. (1982). Audiences’ reactions to self-enhancing, self-denigrating, and accurate self-presentations. Journal of Experimental Social Psychology, 18(1), 89–104.

    Article  Google Scholar 

  • Schmaal, L., Joos, L., Koeleman, M., Veltman, D. J., van den Brink, W., & Goudriaan, A. E. (2013). Effects of modafinil on neural correlates of response inhibition in alcohol-dependent patients. Biological Psychiatry, 73(3), 211–218.

    Article  CAS  PubMed  Google Scholar 

  • Segerstrom, S. C., Tsao, J. C., Alden, L. E., & Craske, M. G. (2000). Worry and rumination: repetitive thought as a concomitant and predictor of negative mood. Cognitive Therapy and Research, 24(6), 671–688.

    Article  Google Scholar 

  • Sekiguchi, A., Sugiura, M., Taki, Y., Kotozaki, Y., Nouchi, R., Takeuchi, H., & Miyauchi, C. M. (2014). White matter microstructural changes as vulnerability factors and acquired signs of post-earthquake distress. PloS One, 9(1), e83967.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharp, M. J., & Getz, J. G. (1996). Substance use as impression management. Personality and Social Psychology Bulletin, 22(1), 60–67.

    Article  Google Scholar 

  • Smith, E. E., & Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science, 283(5408), 1657–1661.

    Article  CAS  PubMed  Google Scholar 

  • Snyder, M. (1974). Self-monitoring of expressive behavior. Journal of Personality and Social Psychology, 30(4), 526.

    Article  Google Scholar 

  • Snyder, M. (1979). Self-monitoring processes 1. Advances in Experimental Social Psychology, 12, 85.

    Article  Google Scholar 

  • Snyder, M. (1987). Public appearances, private realities: The psychology of self-monitoring. WH Freeman/Times Books/Henry Holt & Co.

  • Song, S.-K., Sun, S.-W., Ramsbottom, M. J., Chang, C., Russell, J., & Cross, A. H. (2002). Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. NeuroImage, 17(3), 1429–1436.

    Article  PubMed  Google Scholar 

  • Song, S.-K., Sun, S.-W., Ju, W.-K., Lin, S.-J., Cross, A. H., & Neufeld, A. H. (2003). Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. NeuroImage, 20(3), 1714–1722.

    Article  PubMed  Google Scholar 

  • Song, S.-K., Yoshino, J., Le, T. Q., Lin, S.-J., Sun, S.-W., Cross, A. H., & Armstrong, R. C. (2005). Demyelination increases radial diffusivity in corpus callosum of mouse brain. NeuroImage, 26(1), 132–140.

    Article  PubMed  Google Scholar 

  • Sporns, O., Tononi, G., & Kötter, R. (2005). The human connectome: a structural description of the human brain. PLoS Computational Biology, 1(4), e42.

    Article  PubMed  PubMed Central  Google Scholar 

  • Takei, K., Yamasue, H., Abe, O., Yamada, H., Inoue, H., Suga, M., & Kasai, K. (2009). Structural disruption of the dorsal cingulum bundle is associated with impaired Stroop performance in patients with schizophrenia. Schizophrenia Research, 114(1), 119–127.

    Article  PubMed  Google Scholar 

  • Takeuchi, H., Taki, Y., Sekiguchi, A., Hashizume, H., Nouchi, R., Sassa, Y., Iizuka, K. (2015). Mean diffusivity of globus pallidus associated with verbal creativity measured by divergent thinking and creativity‐related temperaments in young healthy adults. Human brain mapping.

  • Wei, D., Yang, J., Li, W., Wang, K., Zhang, Q., & Qiu, J. (2014). Increased resting functional connectivity of the medial prefrontal cortex in creativity by means of cognitive stimulation. Cortex, 51, 92–102.

    Article  PubMed  Google Scholar 

  • Weissman, D., Giesbrecht, B., Song, A., Mangun, G., & Woldorff, M. (2003). Conflict monitoring in the human anterior cingulate cortex during selective attention to global and local object features. NeuroImage, 19(4), 1361–1368.

    Article  CAS  PubMed  Google Scholar 

  • Whittle, S., Allen, N. B., Fornito, A., Lubman, D. I., Simmons, J. G., Pantelis, C., & Yucel, M. (2009). Variations in cortical folding patterns are related to individual differences in temperament. [Research Support, Non-U.S. Gov’t]. Psychiatry Research, 172(1), 68–74. doi:10.1016/j.pscychresns.2008.06.005.

    Article  PubMed  Google Scholar 

  • Zhu, X., Wang, X., Xiao, J., Liao, J., Zhong, M., Wang, W., & Yao, S. (2012). Evidence of a dissociation pattern in resting-state default mode network connectivity in first-episode, treatment-naive major depression patients. Biological psychiatry, 71, 611–617.

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (31070900; 30800293; 30970892; 31170983), the Program for New Century Excellent Talents in University (2011) by the Ministry of Education, the Fundamental Research Funds for the Central Universities (SWU1209101), China Postdoctoral Science Foundation funded project (2012 M510098), the Research Funds for Southwest University (SWU09103), the Key Discipline Fund of National 211 Project (NSKD11007), the Fundamental Research Funds for the Central Universities (swu1209101), the Program for New Century Excellent Talents in University (2011) by the Ministry of Education, China Postdoctoral Science Foundation funded project (2012 M510098), and the postgraduate Innovation Foundation of Science and Technology of Southwest University(kb2011002).

Conflict of Interest

Junyi Yang, Xue Tian, Dongtao Wei, Huijuan Liu, Qinglin Zhang, KangchengWang, Qunlin Chen, and Jiang Qiu declare that they have no conflicts of interest.

Informed consent

All procedures followed were in accordance with the ethical standards of theresponsible committee on human experimentation (institutional and national) and with the HelsinkiDeclaration of 1975, and the applicable revisions at the time of the investigation. Informed consentwas obtained from all patients for being included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Qiu.

Additional information

Junyi Yang and Xue Tian contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Tian, X., Wei, D. et al. Macro and micro structures in the dorsal anterior cingulate cortex contribute to individual differences in self-monitoring. Brain Imaging and Behavior 10, 477–485 (2016). https://doi.org/10.1007/s11682-015-9398-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-015-9398-0

Keywords

Navigation