Skip to main content
Log in

Phase Transformations in Cd0.96Mn0.04Te0.98Se0.02 Solid Solutions

  • Original Research Article
  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

We have studied phase transformations in Cd0.96Mn0.04Te0.98Se0.02 solid solutions in the temperature range of 1080-1149 °C using differential thermal analysis (DTA). Following the "heating-dwell-cooling" procedure, we investigated the melt supercooling versus superheating, crystallization temperature versus dwell temperature, and crystallization rate versus crystallization temperature. We observed that the Cd0.96Mn0.04Te0.98Se0.02 alloy remained in a semi-liquid state over the dwell temperature range of 1089-1097 °C. Following a "heating-dwell-heating-cooling" procedure, we investigated the solid-phase volume fraction versus dwell temperature, melting temperature versus dwell temperature and melt crystallization rate versus dwell temperature. We observed that at dwell temperatures higher than 1097 °C, the solid phase completely disappeared in the sample, since the effect of melting was not observed, meaning that the sample was a single-phase melt. Despite the fact that the alloy was heated in every cycle up to 1147 ± 2 °C after the intermediate dwell, structural fragments formed during this intermediate dwell were still present even at higher temperatures and, as a result, affected the crystallization. The range of crystallization temperatures decreases with increasing intermediate dwell temperature. Such dependence can be interpreted as an alloy “memory” of its thermal history.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T.E. Schlesinger, J.E. Toney, H. Yoon, E.Y. Lee, B.A. Brunett, L. Franks, and R.B. James, Cadmium Zinc Telluride and its Use as a Nuclear Radiation Detector Material, Mater. Sci. Eng. R, 2001, 32(4–5), p 103-189.

    Article  Google Scholar 

  2. A.E. Bolotnikov, S. Babalola, G.S. Camarda, Y. Cui, R. Gul, S.U. Egarievwe, P.M. Fochuk, M. Fuerstnau, J. Horace, A. Hossain, F. Jones, K.H. Kim, O.V. Kopach, B. McCall, L. Marchini, B. Raghothamachar, R. Taggart, G. Yang, L. Xu, and R.B. James, Correlations Between Crystal Defects and Performance of CdZnTe Detectors, IEEE Trans. Nucl. Sci., 2011, 58(4), p 1972-1980.

    Article  ADS  Google Scholar 

  3. A.E. Bolotnikov, G.S. Camarda, Y. Cui, S.U. Egarievwe, P.M. Fochuk, M. Fuerstnau, R. Gul, A. Hossain, F. Jones, K. Kim, O.V. Kopach, R. Taggart, G. Yang, Z. Ye, L. Xu, and R.B. James, Array of Virtual Frisch-Grid CZT Detectors with Common Cathode Readout and Pulse-Height Correction, Proc. SPIE, 2010, 7805, p 780504.

    Article  Google Scholar 

  4. J.W. Kleppinger, S.K. Chaudhuri, U.N. Roy, R.B. James, and K.C. Mandal, Growth of Cd0.9Zn0.1Te1ySey Single Crystals for Room Temperature gamma-ray Detection, IEEE Trans. Nucl. Sci., 2021, 68(9), p 2429-2434.

    Article  ADS  Google Scholar 

  5. L. Martínez-Herraiz, A.F. Braña, and J.L. Plaza, Vertical Gradient Freeze Growth of Two-Inch Cd1xZnxTe1ySey Ingots with Different Se Content, J. Cryst. Growth, 2021, 573, p 126291.

    Article  Google Scholar 

  6. S. Hwang, H. Yu, A.E. Bolotnikov, R.B. James, and K. Kim, Anomalous Te Inclusion Size and Distribution in CdZnTeSe, IEEE Trans. Nucl. Sci., 2019, 66(11), p 2329-2332.

    Article  ADS  Google Scholar 

  7. S. Chehab, J.C. Woolley, A. Manoogian, and G. Lamarche, Magnetic Susceptibility and Electron Spin Resonance of Cd1zMnzTe1ySey Alloys with z ⩾ 0.85, J. Magn. Magn. Mater., 1986, 62(2–3), p 312-324.

    Article  ADS  Google Scholar 

  8. B. Pukowska, J. Jaglarz, B. Such, T. Wagner, A. Kisiel, and A. Mycielski, Optical Investigations of the CdTeSe and CdMeTeSe (Me = Mn, Fe) Semiconductors, J. Alloys Compd., 2002, 335, p 35-42.

    Article  Google Scholar 

  9. J. Byun, J. Seo, J. Seo, and B. Park, Growth and Characterization of Detector-Grade CdMnTeSe, Nucl. Eng. Technol., 2022, 54(11), p 4215-4219.

    Article  Google Scholar 

  10. L. Shcherbak, P. Feichouk, and O. Panchouk, Effect of CdTe “Postmelting,” J. Cryst. Growth, 1996, 161(1–4), p 16-19.

    Article  ADS  Google Scholar 

  11. L. Shcherbak, Peculiarities of Solid-Liquid-Phase Transition in CdTe, J. Cryst. Growth, 1998, 184–185, p 1057-1060.

    ADS  Google Scholar 

  12. L. Shcherbak, Pre-transition Phenomena in CdTe Near the Melting Point, J. Cryst. Growth, 1999, 197(3), p 397-405.

    Article  ADS  Google Scholar 

  13. L. Shcherbak, P. Feychuk, Y. Plevachuk, C. Dong, O. Kopach, O. Panchuk, and P. Siffert, Structure Rearrangement of CdZnTe (0 < x < 0.1) Melts, J. Alloys Compd., 2004, 371, p 186-190.

    Article  Google Scholar 

  14. V. Kopach, O. Kopach, L. Shcherbak, P. Fochuk, A.E. Bolotnikov, and R.B. James, Differential Thermal Analyses of Cd0.95xMnxZn0.05Te Alloys, Proc. SPIE, 2013, 8852, p 88521.

    Article  ADS  Google Scholar 

  15. V. Kopach, O. Kopach, P. Fochuk, A.E. Bolotnikov, and R.B. James, Melting and Crystallization Peculiarities of Cd0.50Mn0.50Te Solid Solutions, Proc. SPIE, 2023, 12696, p 126960.

    Google Scholar 

  16. V. Kopach, O. Kopach, P. Fochuk, L. Shcherbak, A. Bolotnikov, and R.B. James, Kinetic Parameters of Cd1xyMnxZnyTe Alloys Melting and Crystallization Processes, Phys. Status Solidi (C), 2014, 11, p 1533-1537.

    Article  ADS  Google Scholar 

  17. L. Shcherbak, O. Kopach, and P. Fochuk, Solid-Liquid Cd(Zn)Te Phase Transition Correlative Analysis, J. Cryst. Growth, 2011, 320, p 6-8.

    Article  ADS  Google Scholar 

  18. L. Shcherbak, O. Kopach, P. Fochuk, A.E. Bolotnikov, and R.B. James, Empirical Correlations Between the Arrhenius’ Parameters of Impurities’ Diffusion Coefficients in CdTe Crystals, J. Phase Equilibr. Diffus., 2015, 36(2), p 99-109.

    Article  Google Scholar 

  19. V. Kopach, O. Kopach, L. Shcherbak, P. Fochuk, A.E. Bolotnikov, and R.B. James, Thermodynamics and Crystal Growth of Cd1xyMnxZnyTe (x =0.10, 0.20, y = 0.15), Proc. SPIE, 2021, 11838, p 1183819.

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by a grant from the Simons Foundation (Award Number: 1030286, authors P. Fochuk and O. Kopach). One of the co-authors (R. B. James) was partially supported by the U.S. Department of Energy, NNSA Office of Defense Nuclear Nonproliferation Research and Development and NNSA Minority Serving Institutions Partnership Program. R. B. James also acknowledges support by Battelle Savannah River Alliance, LLC, under Contract No. 89303321CEM000080 with the U.S. Department of Energy. The publisher acknowledges the U.S. Government license to provide public access under the DOE Public Access Plan (http://energy.gov/downloads/doe-publicaccess-plan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleh Kopach.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special tribute issue of the Journal of Phase Equilibria and Diffusion dedicated to the memory of Thaddeus B. “Ted” Massalski. The issue was organized by David E. Laughlin, Carnegie Mellon University; John H. Perepezko, University of Wisconsin–Madison; Wei Xiong, University of Pittsburgh; and JPED Editor-in-Chief Ursula Kattner, National Institute of Standards and Technology (NIST).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 32 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopach, O., Kopach, V., Fochuk, P. et al. Phase Transformations in Cd0.96Mn0.04Te0.98Se0.02 Solid Solutions. J. Phase Equilib. Diffus. (2024). https://doi.org/10.1007/s11669-024-01116-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11669-024-01116-9

Keywords

Navigation