Skip to main content
Log in

Phase Equilibria and Thermodynamic Properties of Selected Compounds in the Ag-Ga-Te-AgBr System

  • Original Research Article
  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The equilibrium T − x space of the Ag-Ga-Te-AgBr system in the part Ag2Te-GaTe-Te-AgBr-Ag2Te below 600 K has been divided into separate phase regions using the electromotive force (EMF) method. Accurate experimental data were obtained using the following electrochemical cells (ECs): (−) IE | NE | SSE | R{Ag+} | PE | IE (+), where IE is the inert electrode (graphite powder), NE is the negative electrode (silver powder), SSE is the solid-state electrolyte (glassy Ag3GeS3Br), PE is the positive electrode, R{Ag+} is the region of PE that is contact in with SSE. At the stage of cell preparation, PE is a non-equilibrium phase mixture of the well-mixed powdered compounds Ag2Te, GaTe, Ga2Te3, AgBr, and tellurium, taken in ratios corresponding to two or three different points of interest for each of the phase regions. The equilibrium set of phases was formed in the R{Ag+} region at 600 K for 48 h with the participation of the Ag+ ions. Silver cations, displaced for thermodynamic reasons from the NE to the PE of ECs, acted as catalysts, i.e., small nucleation centers of equilibrium phases. The spatial position of the established phase regions relative to the position of silver was used to express the overall reactions of synthesis of the binary Ga2Te5, Ga7Te10, Ga3Te4, ternary AgGa5Te8, and quaternary Ag3Ga10Te16Br, Ag3Ga2Te4Br, Ag27Ga2Te12Br9 compounds in the PE of ECs. The values of the standard thermodynamic functions (Gibbs energies, enthalpies, and entropies) of these compounds were determined based on the temperature dependencies of the EMF of the ECs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. T.P. Bailey and C. Uher, Potential for Superionic Conductors in Thermoelectric Applications, Curr. Opin. Green Sustain. Chem., 2017, 4, p 58-63. https://doi.org/10.1016/j.cogsc.2017.02.007

    Article  Google Scholar 

  2. W. Liu, J. Hu, S. Zhang, M. Deng, C.-G. Han, and Y. Liu, New Trends, Strategies and Opportunities in Thermoelectric Materials: A Perspective, Mater. Today Phys., 2017, 1, p 50-60. https://doi.org/10.1016/j.mtphys.2017.06.001

    Article  Google Scholar 

  3. Y. Shi, C. Sturm, and H. Kleinke, Chalcogenides as Thermoelectric Materials, J. Solid State Chem., 2019, 270, p 273-279. https://doi.org/10.1016/j.jssc.2018.10.049

    Article  ADS  CAS  Google Scholar 

  4. R.M. Sardarly, G.M. Ashirov, L.F. Mashadiyeva, N.A. Aliyeva, F.T. Salmanov, R.S. Agayeva, R.A. Mamedov, and M.B. Babanly, Ionic Conductivity of the Ag8GeSe6 Compound, Mod. Phys. Lett. B, 2022, 36(32-33), p 2250171. https://doi.org/10.1142/S0217984922501718

    Article  ADS  CAS  Google Scholar 

  5. S.Y. Tee, D. Ponsford, C.L. Lay, X. Wang, X. Wang, D.C. Neo, T. Wu, W. Thitsartarn, J.C. Yeo, G. Guan, T.-C. Lee, and M.-Y. Han, Thermoelectric Silver-Based Chalcogenides, Adv. Sci., 2022, 9(36), p 2204624. https://doi.org/10.1002/advs.202204624

    Article  CAS  Google Scholar 

  6. W. Zhou, J. Wu, W. Liu, and S.-P. Guo, Ag-Based Chalcogenides and Derivatives as Promising Infrared Nonlinear Optical Materials, Coord. Chem. Rev., 2023, 477(1-15), p 214950. https://doi.org/10.1016/j.ccr.2022.214950

    Article  CAS  Google Scholar 

  7. M.V. Moroz and M.V. Prokhorenko, Thermodynamic Properties of the Intermediate Phases of the Ag-Sb-Se System, Russ. J. Phys. Chem. A, 2014, 88(5), p 742-746. https://doi.org/10.1134/S0036024414050203

    Article  CAS  Google Scholar 

  8. L.F. Mashadieva, J.O. Kevser, I.I. Aliev, Y.A. Yusibov, D.B. Tagiyev, Z.S. Aliev, and M.B. Babanly, Phase Equilibria in the Ag2Te-SnTe-Sb2Te3 System and Thermodynamic Properties of the (2SnTe)1−x(AgSbTe2)x Solid Solution, J. Phase Equilibria Diffus., 2017, 38, p 603-614. https://doi.org/10.1007/s11669-017-0583-2

    Article  CAS  Google Scholar 

  9. T.V. Vu, A.A. Lavrentyev, B.V. Gabrelian, V.A. Ocheretova, O.V. Parasyuk, and O.Y. Khyzhun, Particular Features of the Electronic Structure and optical Properties of Ag2PbGeS4 as Evidenced from First-Principles DFT Calculations and XPS Studies, Mater. Chem. Phys., 2018, 208, p 268-280. https://doi.org/10.1016/j.matchemphys.2018.01.042

    Article  CAS  Google Scholar 

  10. A.O. Selezen, I.D. Olekseyuk, G.L. Myronchuk, O.V. Smitiukh, and L.V. Piskach, Synthesis and Structure of the New Semiconductor Compounds Tl2BIIDIVX4 (BII-Cd, Hg; DIV-Si, Ge; X-Se, Te) and Isothermal Sections of the Tl2Se-CdSe-Ge(Sn)Se2 Systems at 570 K, J. Solid State Chem., 2020, 289, 121422. https://doi.org/10.1016/j.jssc.2020.121422

    Article  CAS  Google Scholar 

  11. I.A. Ivashchenko, O.S. Klymovych, I.D. Olekseyuk, L.D. Gulay, V.V. Halyan, and O.M. Strok, Quasi-Ternary System Ag2Se-GeSe2-As2Se3, J. Phase Equilibria Diffus., 2022, 43(4), p 483-494. https://doi.org/10.1007/s11669-022-00987-0

    Article  CAS  Google Scholar 

  12. I. Semkiv, H. Ilchuk, M. Pawlowski, and V. Kusnezh, Ag8SnSe6 Argyrodite Synthesis and Optical Properties, Opto-Electron. Rev., 2017, 25(1), p 37-40. https://doi.org/10.1016/j.opelre.2017.04.002

    Article  ADS  Google Scholar 

  13. O.H. Ando Junior, A.L.O. Maran, and N.C. Henao, A review of the development and applications of thermoelectric microgenerators for energy harvesting, Renew. Sustain. Energy Rev., 2018, 91, p 376-393. https://doi.org/10.1016/j.rser.2018.03.052

    Article  Google Scholar 

  14. S. Hooshmand Zaferani, M. Jafarian, D. Vashaee, and R. Ghomashchi, Thermal Management Systems and Waste Heat Recycling by Thermoelectric Generators—An Overview, Energies, 2021, 14(18), p 5646. https://doi.org/10.3390/en14185646

    Article  CAS  Google Scholar 

  15. A.O. Ochieng, T.F. Megahed, S. Ookawara, and H. Hassan, Comprehensive Review in Waste Heat Recovery in Different Thermal Energy-Consuming Processes Using Thermoelectric Generators for Electrical Power Generation, Process. Saf. Environ. Prot., 2022, 162, p 134-154. https://doi.org/10.1016/j.psep.2022.03.070

    Article  CAS  Google Scholar 

  16. R. Freer and A.V. Powell, Realising the Potential of Thermoelectric Technology: A Roadmap, J. Mater. Chem. C, 2020, 8(2), p 441-463. https://doi.org/10.1039/C9TC05710B

    Article  CAS  Google Scholar 

  17. G.S. Hasanova, A.I. Aghazade, S.Z. Imamaliyeva, Y.A. Yusibov, and M.B. Babanly, Refinement of the Phase Diagram of the Bi-Te System and the Thermodynamic Properties of Lower Bismuth Tellurides, JOM, 2021, 73(5), p 1511-1521. https://doi.org/10.1007/s11837-021-04621-1

    Article  ADS  CAS  Google Scholar 

  18. X. Zeng, C. Yan, L. Ren, T. Zhang, F. Zhou, X. Liang, N. Wang, R. Sun, J.-B. Xu, and C.-P. Wong, Silver Telluride Nanowire Assembly for High-Performance Flexible Thermoelectric Film and its Application in Self-Powered Temperature Sensor, Adv. Electron. Mater, 2019, 5(2), p 1800612. https://doi.org/10.1002/aelm.201800612

    Article  CAS  Google Scholar 

  19. T. Takabatake, K. Suekuni, T. Nakayama, and E. Kaneshita, Phonon-Glass Electron-Crystal Thermoelectric Clathrates: Experiments and Theory, Rev. Mod. Phys., 2014, 86(2), p 669-716. https://doi.org/10.1103/RevModPhys.86.669

    Article  ADS  CAS  Google Scholar 

  20. M. Beekman, D.T. Morelli, and G.S. Nolas, Better Thermoelectrics Through Glass-Like Crystals, Nat. Mater., 2015, 14(12), p 1182-1185. https://doi.org/10.1038/nmat4461

    Article  ADS  CAS  PubMed  Google Scholar 

  21. M.J. Filep, A.I. Pogodin, M.M. Luchynets, and I.P. Studenyak, Thermoelectric Parameters of Single Crystals with Argyrodite Structure in Cu7PS6-Cu6PS5Br and Cu7PS6-Cu6PS5I Systems, Uzhhorod Univ. Sci, Herald. Ser. Phys., 2020, 40, p 44-51. (in Ukrainian)

    Google Scholar 

  22. S. Drzewowska and B. Onderka, Different Approach to Thermodynamic Description of Bi-Te Binary System, J. Phase Equilibria Diffus., 2023, 44(3), p 429-444. https://doi.org/10.1007/s11669-023-01049-9

    Article  CAS  Google Scholar 

  23. R. Blachnik and H.A. Dreisbach, The Phase Diagrams of Ag2X-AgY (X = S, Se, Te; Y = Cl, Br, I): Mixtures and the Structure of Ag5Te2Cl, J. Solid State Chem., 1985, 60(1), p 115–122. https://doi.org/10.1016/0022-4596(85)90171-9

    Article  ADS  CAS  Google Scholar 

  24. V. Kramer, H. Hirth, M. Hofherr, and H.-P. Trah, Phase Studies in the Systems Ag2Te-Ga2Te3, ZnSe-In2Se3 and ZnS-Ga2S3, Thermochim. Acta, 1987, 112(1), p 88–94. https://doi.org/10.1016/0040-6031(87)88085-1

    Article  Google Scholar 

  25. I.A. Ivashchenko, V.S. Kozak, L.D. Gulay, and V.V. Galyan, Phase Equilibria in the Quasi-Ternary System Cu2Se-In2Se3-CuI and the Crystal Structure of the AIBIII2XVI3YVII Compounds, Where AI-Cu, Ag; BIII-Ga; XVI-Cl, Br, I; YVII-S, Se, Te, J. Phase Equilibria Diffus., 2023, 44(6), p 714–728. https://doi.org/10.1007/s11669-023-01073-9

    Article  CAS  Google Scholar 

  26. M. Guittard, J. Rivet, F. Alapini, A. Chilouet, and A.-M. Loireau-Lozac’h, Description du Système Ternaire Ag-Ga-Te, J. Common Met., 1991, 170(2), p 373–392. https://doi.org/10.1016/0022-5088(91)90339-6

    Article  CAS  Google Scholar 

  27. H.J. Deiseroth and H.-D. Müller, Crystal Structures of heptagallium Decatelluride, Ga7Te10 and Heptaindium Decatelluride, In7Te10, Z. Für Krist. Cryst. Mater., 1995, 210(1), p 57–58. https://doi.org/10.1524/zkri.1995.210.1.57

    Article  CAS  Google Scholar 

  28. C. Julien, I. Ivanov, A. Khelfa, F. Alapini, and M. Guittard, Characterization of the Ternary Compounds AgGaTe2 and AgGa5Te8, J. Mater. Sci., 1996, 31(12), p 3315–3319. https://doi.org/10.1007/BF00354684

    Article  ADS  CAS  Google Scholar 

  29. R. Blachnik, and E. Klose, Experimental Investigation and Thermodynamic Calculation of Excess Enthalpies in the Ga-In-Te System, J. Alloys Compd., 2000, 305(1–2), p 144–152. https://doi.org/10.1016/S0925-8388(00)00695-2

    Article  CAS  Google Scholar 

  30. A. Charoenphakdee, K. Kurosaki, H. Muta, M. Uno, and S. Yamanaka, Thermal Conductivity of the Ternary Compounds: AgMTe2 and AgM5Te8 (M=Ga or In), Mater. Trans., 2009, 50(7), p 1603–1606. https://doi.org/10.2320/matertrans.E-M2009810

    Article  CAS  Google Scholar 

  31. S. Lin, W. Li, Z. Bu, B. Shan, and Y. Pei, Thermoelectric p-Type Ag9GaTe6 with an Intrinsically Low Lattice Thermal Conductivity, ACS Appl. Energy Mater., 2020, 3(2), p 1892–1898. https://doi.org/10.1021/acsaem.9b02330

    Article  CAS  Google Scholar 

  32. M.V. Moroz, P. Demchenko, M.V. Prokhorenko, and O.V. Reshetnyak, Thermodynamic Properties of Saturated Solid Solutions of the Phases Ag2PbGeS4, Ag0.5Pb1.75GeS4 and Ag6.72Pb0.16Ge0.84S5.20 of the Ag-Pb-Ge-S System Determined by EMF Method, J. Phase Equilibria Diffus., 2017, 38(4), p 426–433. https://doi.org/10.1007/s11669-017-0563-6

    Article  CAS  Google Scholar 

  33. M.V. Moroz, M.V. Prokhorenko, O.V. Reshetnyak, and PYu. Demchenko, Electrochemical Determination of Thermodynamic Properties of Saturated Solid Solutions of Hg2GeSe3, Hg2GeSe4, Ag2Hg3GeSe6, and Ag1.4Hg1.3GeSe6 Compounds in the Ag-Hg-Ge-Se System, J. Solid State Electrochem., 2017, 21(3), p 833–837. https://doi.org/10.1007/s10008-016-3424-z

    Article  CAS  Google Scholar 

  34. Diffractometer Stoe WinXPOW, Version 3.03, Stoe & Cie GmbH, Darmstadt, 2010

  35. W. Kraus and G. Nolze, POWDER CELL—A Program for the Representation and Manipulation of Crystal Structures and Calculation of the Resulting x-ray Powder Patterns, J. Appl. Crystallogr., 1996, 29, p 301–303. https://doi.org/10.1107/S0021889895014920

    Article  ADS  CAS  Google Scholar 

  36. J. Rodriguez-Carvajal, Recent Developments of the Program FULLPROF, IUCr Comm. Powder Diffr. Newsl., 2001, 26, p 12–19.

    Google Scholar 

  37. R.T. Downs and M. Hall-Wallace, The American Mineralogist Crystal Structure Database, Am. Miner., 2003, 88, p 247–250.

    CAS  Google Scholar 

  38. P. Villars and K. Cenzual (Eds.), Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds, Release 2021/22, ASM International, Materials Park (Ohio, USA), 2012

  39. M. Moroz, F. Tesfaye, P. Demchenko, M. Prokhorenko, S. Prokhorenko, and O. Reshetnyak, Non-Activation Synthesis and Thermodynamic Properties of Ternary Compounds of the Ag-Te-Br System, Thermochim. Acta, 2021, 698, p 178862. https://doi.org/10.1016/j.tca.2021.178862

    Article  CAS  Google Scholar 

  40. M. Moroz, F. Tesfaye, P. Demchenko, V. Kordan, M. Prokhorenko, O. Mysina, O. Reshetnyak, and R. Gladyshevskii, Synthesis, Thermodynamic Properties, and Structural Characteristics of Multicomponent Compounds in the Ag-Ni-Sn-S System, JOM, 2023, 75(6), p 2016–2025. https://doi.org/10.1007/s11837-023-05784-9

    Article  ADS  CAS  Google Scholar 

  41. M.V. Moroz, PYu. Demchenko, O.G. Mykolaychuk, L.G. Akselrud, and R.E. Gladyshevskii, Synthesis and Electrical Conductivity of Crystalline and Glassy Alloys in the Ag3GeS3Br-GeS2 System, Inorg. Mater., 2013, 49(9), p 867–871. https://doi.org/10.1134/S0020168513090100

    Article  CAS  Google Scholar 

  42. M. Moroz, F. Tesfaye, P. Demchenko, M. Prokhorenko, D. Lindberg, O. Reshetnyak, and L. Hupa, Phase Equilibria and Thermodynamics of Selected Compounds in the Ag-Fe-Sn-S System, J. Electron. Mater., 2018, 47(9), p 5433–5442. https://doi.org/10.1007/s11664-018-6430-3

    Article  ADS  CAS  Google Scholar 

  43. M.V. Moroz, M.V. Prokhorenko, and B.P. Rudyk, Thermodynamic Properties of Phases of the Ag-Ge-Te System, Russ. J. Electrochem., 2014, 50(12), p 1177–1181. https://doi.org/10.1134/S1023193514120039

    Article  CAS  Google Scholar 

  44. M.V. Prokhorenko, M.V. Moroz, and P.Y. Demchenko, Measuring the Thermodynamic Properties of Saturated Solid Solutions in the Ag2Te-Bi-Bi2Te3 System by the Electromotive Force Method, Russ. J. Phys. Chem. A, 2015, 89(8), p 1330–1334. https://doi.org/10.1134/S0036024415080269

    Article  CAS  Google Scholar 

  45. R. Blachnik and U. Stöter, The Phase Diagram AgI-ZnI2, Thermochim. Acta, 1989, 145, p 93–99. https://doi.org/10.1016/0040-6031(89)85129-9

    Article  CAS  Google Scholar 

  46. M. Moroz, F. Tesfaye, P. Demchenko, M. Prokhorenko, Y. Kogut, O. Pereviznyk, S. Prokhorenko, and O. Reshetnyak, Solid-State Electrochemical Synthesis and Thermodynamic Properties of Selected Compounds in the Ag-FePb-Se System, Solid State Sci., 2020, 107, p 106344. https://doi.org/10.1016/j.solidstatesciences.2020.106344

    Article  CAS  Google Scholar 

  47. M. Moroz, F. Tesfaye, P. Demchenko, M. Prokhorenko, N. Yarema, D. Lindberg, O. Reshetnyak, and L. Hupa, The Equilibrium Phase Formation and Thermodynamic Properties of Functional Tellurides in the Ag-Fe-Ge-Te System, Energies, 2021, 14(5), p 1314. https://doi.org/10.3390/en14051314

    Article  CAS  Google Scholar 

  48. M. Babanly, Y. Yusibov, and N. Babanly, The EMF Method with Solid-State Electrolyte in the Thermodynamic Investigation of Ternary Copper and Silver Chalcogenides. In Electromotive Force and Measurement in Several Systems (S. Kara, Ed.), InTech, 2011, p 57–78. https://doi.org/10.5772/28934

  49. F.M. Mammadov, I.R. Amiraslanov, S.Z. Imamaliyeva, and M.B. Babanly, Phase Relations in the FeSe–FeGa2Se4–FeIn2Se4 System: Refinement of the Crystal Structures of FeIn2Se4 and FeGaInSe4, J. Phase Equilibria Diffus., 2019, 40(6), p 787–796. https://doi.org/10.1007/s11669-019-00768-2

    Article  CAS  Google Scholar 

  50. G.S. Hasanova, A.I. Aghazade, D.M. Babanly, S.Z. Imamaliyeva, Y.A. Yusibov, and M.B. Babanly, Experimental Study of the Phase Relations and Thermodynamic Properties of Bi-Se System, J. Therm. Anal. Calorim., 2021, 147, p 6403–6414. https://doi.org/10.1007/s10973-021-10975-0

    Article  CAS  Google Scholar 

  51. N.B. Babanly, E.N. Orujlu, S.Z. Imamaliyeva, Y.A. Yusibov, and M.B. Babanly, Thermodynamic Investigation of Silver-Thallium Tellurides by EMF Method with Solid Electrolyte Ag4RbI5, J. Chem. Thermodyn., 2019, 128, p 78–86. https://doi.org/10.1016/j.jct.2018.08.012

    Article  CAS  Google Scholar 

  52. S.Z. Imamaliyeva, S.S. Musayeva, D.M. Babanly, Y.I. Jafarov, D.B. Taghiyev, and M.B. Babanly, Determination of the Thermodynamic Functions of Bismuth Chalcoiodides by EMF Method with Morpholinium Formate as Electrolyte, Thermochim. Acta, 2019, 679, p 178319. https://doi.org/10.1016/j.tca.2019.178319

    Article  CAS  Google Scholar 

  53. F.J. Gravetter and L.B. Wallnau, Statistics for the Behavioral Sciences, 10th edn. Cengage Learning, Australia; United States, 2017.

    Google Scholar 

  54. I. Barin, Thermochemical Data of Pure Substances. Wiley, 1995. https://doi.org/10.1002/9783527619825.

Download references

Acknowledgments

The present work was financed partially by the grant of the Ministry of Education and Science of Ukraine No. 0123U101857 “Physico-chemistry of functional nanomaterials for electrochemical systems”, international projects: #HX-010123 from ‘‘Materials Phases Data System, Viznau, Switzerland’’ and the Simons Foundation (Award Number: 1037973). This work was partly funded by the K.H. Renlund Foundation under the project “Innovative e-waste recycling processes for greener and more efficient recoveries of critical metals and energy” at Åbo Akademi University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mykola Moroz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special tribute issue of the Journal of Phase Equilibria and Diffusion dedicated to the memory of Thaddeus B. “Ted” Massalski. The issue was organized by David E. Laughlin, Carnegie Mellon University; John H. Perepezko, University of Wisconsin–Madison; Wei Xiong, University of Pittsburgh; and JPED Editor-in-Chief Ursula Kattner, National Institute of Standards and Technology (NIST).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moroz, M., Tesfaye, F., Demchenko, P. et al. Phase Equilibria and Thermodynamic Properties of Selected Compounds in the Ag-Ga-Te-AgBr System. J. Phase Equilib. Diffus. (2024). https://doi.org/10.1007/s11669-024-01095-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11669-024-01095-x

Keywords

Navigation