Skip to main content
Log in

Thermodynamics and Chemical Ordering of Liquid Cu-Hf-Ni-Ti-Zr Alloys

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

A database to calculate the thermodynamic properties of the liquid quinary Cu-Hf-Ni-Ti-Zr glass forming alloys is developed in the framework of the CALPHAD method. The thermodynamic properties of liquid alloys are modeled using the associate solution model. The thermodynamic properties of three-, four- and five-component liquid alloys of the Cu-Hf-Ni-Ti-Zr system are calculated for a wide composition range. Particular attention is paid to alloys of equiatomic composition, including high-entropy CuHfNiTiZr alloy. The interplay of the ideal and excess contributions to the Gibbs energy of mixing for multicomponent liquid alloys is analyzed, and their role in the thermodynamic stability of the liquid phase is discussed. The amorphization ranges in quaternary and quinary systems are predicted by considering a total molar fraction of associates in liquid alloys. It is shown that equiatomic CuHfNiTiZr liquid falls into the predicted amorphization space. The predicted amorphization ranges for quaternary and quinary systems agree well with available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. W.H. Wang, High-Entropy Metallic Glasses, JOM, 2014, 66, p 2067–2077

    Article  Google Scholar 

  2. A. Takeuchi, K. Amiya, T. Wada, K. Yubuta, W. Zhang, and A. Makino, Alloy Designs of High-Entropy Crystalline and Bulk Glassy Alloys by Evaluating Mixing Enthalpy and Delta Parameter for Quinary to Decimal Equi-Atomic Alloys, Mater. Trans., 2014, 55, p 165–170

    Article  Google Scholar 

  3. A. Takeuchi, K. Amiya, T. Wada, K. Yubuta, W. Zhang, and A. Makino, Entropies in Alloy Design for High-Entropy and Bulk Glassy Alloys, Entropy, 2013, 15, p 3810–3821

    Article  MathSciNet  ADS  Google Scholar 

  4. L. Ma, L. Wang, T. Zhang, and A. Inoue, Bulk Glass Formation of Ti-Zr-Hf-Cu-M (M = Fe Co, Ni) Alloys, Mater. Trans., 2002, 43, p 277–280

    Article  Google Scholar 

  5. Y. Yokoyama, S. Itoh, Y. Murakami, I. Narita, G. Wang, and P.K. Liaw, Microsegregation in and Phase Stability of As-Cast Ti-Zr-Hf-Ni-Pd-Pt High-Entropy Alloys, Metall. Mater. Trans. A, 2015, 46, p 1474–1480

    Article  Google Scholar 

  6. F. Sommer, J.J. Lee, and B. Predel, Calorimetric Investigations of Liquid Alkaline Earth Metal Alloys, Ber. Bunsenges. Phys. Chem., 1983, 87, p 792–797

    Article  Google Scholar 

  7. L.A. Dreval, P.G. Agraval, and M.A. Turchanin, Enthalpy of Mixing of Liquid Cu-Fe-Zr Alloys at 1873 K (1600 °C), Metall. Mater. Trans. B, 2015, 46, p 2234–2245

    Article  Google Scholar 

  8. M.A. Turchanin, P.G. Agraval, and A.R. Abdulov, Thermodynamic Assessment of the Cu-Ti-Zr System. II. Cu-Zr and Ti-Zr Systems, Powder Metall. Met. Ceram., 2008, 47, p 428–446

    Article  Google Scholar 

  9. H. Bittermann, and P. Rogl, Critical Assessment and Thermodynamic Calculation of the Ternary System C-Hf-Zr (Carbon-Zirconium-Hafnium), J. Phase Equilib. Diffus., 2002, 23, p 218–235

    Article  Google Scholar 

  10. P.G. Agraval, M.A. Turchanin, and I.S. Aliev, Thermodynamic Assessment of the Ni-Zr System, in Series Monografie Nr 31, XIV Intern. Scientific Conf. New Techn. Achiev. in Metall., Mat. Eng. Prod. Eng., A. Kawalek, ed., 2013, 1, p 149–152

  11. M.A. Turchanin and P.G. Agraval, Calculation of Metastable Phase Equilibria with Participation of Supercooled Liquid and Assessment of Glass Formation Composition Range in the (Co, Ni, Cu)–IVA-metal Melts, in Physical Chemistry of Condensed Systems and Interfaces (Collected Scientific Papers), 2003, p 134–141

  12. M. Turchanin, P. Agraval, L. Dreval, and A. Vodopyanova, Calorimetric Investigation of the Mixing Enthalpy of Liquid Hf-Ni-Ti Alloys and Thermodynamic Properties and Chemical Ordering in Quaternary Liquid Cu-Hf-Ni-Ti Alloys, J. Phase Equilib. Diffus., 2020, 41, p 469–490

    Article  Google Scholar 

  13. D.G. Pettifor, The Structures of Binary Compounds. I. Phenomenological Structure Maps, J. Phys. C Solid State Phys., 1986, 19, p 285–313

    Article  ADS  Google Scholar 

  14. O.J. Kleppa and S. Watanabe, Thermochemistry of Alloys of Transition Metals: Part III. Copper-Silver, -Titanium, Zirconium, and -Hafnium at 1373 K, Metall. Mater. Trans. B, 1982, 13, p 391–401

    Article  ADS  Google Scholar 

  15. K. Yamaguchi, Y.-C. Song, T. Yoshida, and K. Itagaki, Thermodynamic Investigation of the Cu-Zr System, J. Alloys Compd., 2008, 452, p 73–79

    Article  Google Scholar 

  16. F. Sommer and D.K. Choi, Thermodynamic Investigations of Liquid and Glassy Copper-Zirconium Alloys, Z. Metallkd., 1989, 80, p 263–269

    Google Scholar 

  17. V.S. Sudavtsova, G.I. Batalin, A.V. Kalmykov, and F.F. Kuznetsov, Mixing Enthalpies of Binary Liquid Alloys of Copper with Yttrium and Zirconium, Izvest. VUZ, Tsvetn. Metall., 1983, (6), p 107–108

  18. V. Witusievicz, I. Arpshofen, and F. Sommer, Thermodynamics of Liquid Cu-Si and Cu-Zr Alloys, Z. Metallkd., 1997, 88, p 866–872

    Google Scholar 

  19. A.A. Turchanin, I.A. Tomilin, M.A. Turchanin, I.V. Belokonenko, and P.G. Agraval, Enthalpies of Formation of Liquid and Amorphous Cu-Zr Alloys, J. Non-Cryst. Solids, 1999, 250–252, p 582–585

    Article  ADS  Google Scholar 

  20. V.V. Berezutskii, Thermodynamic Properties of Liquid Alloys of Copper with Zirconium, Ukr. Khim. Zh., 1993, 59, p 1051–1053

    Google Scholar 

  21. A.I. Zaitsev, N.E. Zaitseva, Yu.P. Alekseeva, E.M. Kuril’chenko, and S.F. Dunaev, Thermodynamic Properties of Melts and Phase Equilibria in the Copper-Zirconium System, Inorg. Mater., 2003, 39, p 816–825

    Article  Google Scholar 

  22. V.T. Witusiewicz and F. Sommer, Enthalpy of Mixing of Liquid Ni-Zr and Cu-Ni-Zr Alloys, Metall. Mater. Trans. B, 2000, 31, p 277–284

    Article  Google Scholar 

  23. H. Wang and R. Lück, Mixing Enthalpy of Liquid T-Ti-Zr (T = Fe Co, Ni) Alloys, J. Non-Cryst. Solids, 1996, 205–207, p 417–420

    Article  ADS  Google Scholar 

  24. I. Arpshofen, R. Lück, B. Predel, and J.F. Smith, Calorimetric Determination of the Enthalpies of Formation of Liquid Ni-Zr Alloys, J. Phase Equilib., 1991, 12, p 141–147

    Article  Google Scholar 

  25. M.A. Turchanin, I.V. Belokonenko, P.G. Agraval, and A.A. Turchanin, Enthalpies of Formation of Liquid Binary Ni + (Ti, Zr, and Hf) Alloys, Schr. FZ Jul. Energy, 2000, 15, p 93–97

    Google Scholar 

  26. A.A. Turchanin, M.A. Turchanin, and P.G. Agraval, Thermodynamics of Undercooled Liquid and Amorphous Binary Metallic Alloys, J. Metastab. Nanocryst. Mater., 2001, 10, p 481–486

    Google Scholar 

  27. OYu. Sidorov, Yu.O. Esin, and P.V. Geld, Partial and Integral Enthalpies of Formation of Liquid Zirconium Alloys with Nickel, Rasplavy, 1988, 2, p 9–11

    Google Scholar 

  28. M. Rösner-Kuhn, J. Qin, K. Schaefers, U. Thiedemann, and M.G. Frohberg, Temperature Dependence of the Mixing Enthalpy and Excess Heat Capacity in the Liquid System Nickel-Zirconium, Int. J. Thermophys., 1996, 17, p 959–966

    Article  ADS  Google Scholar 

  29. A.I. Zaitsev, N.E. Zaitseva, EKh. Shakhpazov, and A.A. Kodentsov, Thermodynamic Properties and Phase Equilibria in the Nickel-Zirconium System. The Liquid to Amorphous State Transition, Phys. Chem. Chem. Phys., 2002, 4, p 6047–6058

    Article  Google Scholar 

  30. U. Thiedemann, M. Rösner-Kuhn, K. Drewes, G. Kuppermann, and M.G. Frohberg, Mixing Enthalpy Measurements of Liquid Ti-Zr Fe-Ti-Zr and Fe-Ni-Zr Alloys, Steel Res., 1999, 70, p 3–8

    Article  Google Scholar 

  31. A.R. Abdulov, M.A. Turchanin, P.G. Agraval, and A.A. Solorev, Enthalpy of Mixing of Liquid Cu-Ti-Zr Alloys, Russ. Metall., 2007, 2007, p 23–28

    Article  ADS  Google Scholar 

  32. P. Agraval, L. Dreval, M. Turchanin, A. Storchak-Fedyuk, L. Artyukh, and T. Velikanova, Enthalpy of Mixing of Liquid Ni-Ti-Zr Alloys at 1873K, J. Chem. Thermodyn., 2017, 106, p 309–316

    Article  Google Scholar 

  33. Y.M. Muggianu, M. Gambino, and J.P. Bros, Enthalpies of Formation of Liquid Alloys Bismuth-Gallium-Tin at 723 K. Choice of an Analytical Representation of Integral and Partial Excess Functions of Mixing, J. Chim. Phys., 1975, 72, p 83–88

    Article  Google Scholar 

  34. R. Schmid and Y.A. Chang, A Thermodynamic Study on an Associated Solution Model for Liquid Alloys, Calphad, 1985, 9, p 363–382

    Article  Google Scholar 

  35. F. Sommer, Association Model for the Description of the Thermodynamic Functions of Liquid Alloys. I. Basic Concepts, Z. Metallkd., 1982, 73, p 72–76

    Google Scholar 

  36. M.A. Turchanin and P.G. Agraval, Thermodynamic Assessment of the Copper-Hafnium System, Powder Metall Met. Ceram., 2008, 47, p 223–233

    Article  Google Scholar 

  37. M.A. Turchanin, P.G. Agraval, and A.R. Abdulov, Thermodynamic Assessment of the Cu-Ti-Zr System. I. Cu-Ti System, Powder Metall. Met. Ceram., 2008, 47, p 344–360

    Article  Google Scholar 

  38. P.G. Agraval, A.R. Abdulov, L.A. Dreval, and M.A. Turchanin, Thermodynamic Modeling of Stable and Metastable Transformations in the Ni-Ti System, Vestn. DGMA, 2011, 25, p 6–13

    Google Scholar 

  39. M.A. Turchanin, P.G. Agraval, and A.R. Abdulov, Phase Equilibria and Thermodynamics of Binary Copper Systems with 3d-metals. VI. Copper-Nickel System, Powder Metall. Met. Ceram., 2007, 46, p 467–477

    Article  Google Scholar 

  40. H. Bittermann and P. Rogl, Critical Assessment and Thermodynamic Calculation of the Ternary System Boron-Hafnium-Titanium (B-Hf-Ti), J. Phase Equilib., 1997, 18, p 24–47

    Article  Google Scholar 

  41. A.R. Abdulov, M.A. Turchanin, and P.G. Agraval, Application of Model of the Ideal Associated Solution for Forecasting Areas of the Amorphization of Ternary Melts, Metallofiz. Nov. Tekhnol., 2006, 28, p 121–130

    Google Scholar 

  42. M.A. Turchanin, P.G. Agraval, T.Y. Velikanova, and A.A. Vodopyanova, Predicting the Composition Ranges of Amorphization for Multicomponent Melts in the Framework of the Calphad Method, Powder Metall. Met. Ceram., 2018, 57, p 57–70

    Article  Google Scholar 

  43. J.-O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman, Thermo-Calc and DICTRA, Computational Tools for Materials Science, Calphad, 2002, 26, p 273–312

    Article  Google Scholar 

  44. B. Sundman, U.R. Kattner, M. Palumbo, and S.G. Fries, OpenCalphad: A Free Thermodynamic Software, Integr. Mater. Manuf. Innov., 2015, 4, p 1–15

    Article  Google Scholar 

  45. S.P. Alisova, N.V. Lutskaya, P.V. Budberg, and E.I. Bychkova, Phase Constitution of the TiCu-TiNi-TiCo(TiFe) Systems in the Equilibrium and Metastable States, Russ. Metall., 1993, 3, p 205–212

    Google Scholar 

  46. Z. Altounian, E. Batalla, and J.O. Strom-Olsen, Crystallization Characteristics of Late Transition Metal-Zr Glasses Around the Composition M90Zr10, J. Appl. Phys., 1986, 59, p 2364–2367

    Article  ADS  Google Scholar 

  47. Z. Altounian, T. Guo-hua, and J.O. Strom-Olsen, Crystallization Characteristics of Cu-Zr Metallic Glasses from Cu70Zr30 to Cu25Zr75, J. Appl. Phys., 1982, 53, p 4755–4760

    Article  ADS  Google Scholar 

  48. K. Amiya, N. Nishiyama, A. Inoue, and T. Masumoto, Mechanical Strength and Thermal Stability of Ti-based Amorphous Alloys with Large Glass-forming Ability, Mater. Sci. Eng. A, 1994, 179–180, p 692–696

    Article  Google Scholar 

  49. J. Basu and S. Ranganathan, Glass-forming Ability and Stability of Ternary Ni-early Transition Metal (Ti/Zr/Hf) Alloys, Acta Mater., 2006, 54, p 3637–3646

    Article  ADS  Google Scholar 

  50. J. Basu and S. Ranganathan, Glass Forming Ability and Stability: Ternary Cu Bearing Ti, Zr, Hf Alloys, Intermetallics, 2009, 17, p 128–135

    Article  Google Scholar 

  51. H. Baxi and T. Massalski, Measurement and Interpretation of Glass Transition Temperature Tg in a Number of Metallic Systems, Mater. Sci. Eng., 1988, 97, p 291–296

    Article  Google Scholar 

  52. R. Bormann, Thermodynamics of Undercooled Liquids and its Application to Amorphous Phase Formation, Mater. Sci. Eng. A, 1994, 178, p 55–60

    Article  Google Scholar 

  53. R. Bormann and K. Zöltzer, Determination of the Thermodynamic Functions and Calculation of Phase Diagrams for Metastable Phases, Phys. Stat. Sol. A, 1992, 131, p 691–705

    Article  ADS  Google Scholar 

  54. K.H.J. Buschow, Short-range Order and Thermal Stability in Amorphous Alloys, Phys. Stat. Sol. A, 1984, 14, p 593–607

    Google Scholar 

  55. K.H.J. Buschow and N.M. Beekmans, Formation, Decomposition, and Electrical transport Properties of Amorphous Hf-Ni and Hf-Co Alloys, J. Appl. Phys., 1979, 50, p 6348–6352

    Article  ADS  Google Scholar 

  56. K.H.J. Buschow, Effect of Short-range Ordering on the Thermal Stability of Amorphous Ti-Cu Alloys, Scr. Metall., 1983, 17, p 1135–1139

    Article  Google Scholar 

  57. K.H.J. Buschow and N.M. Beekmans, Thermal Stability of Amorphous Alloys, Sol. State Commun., 1980, 35, p 233–236

    Article  ADS  Google Scholar 

  58. V.N. Chebotnikov and V.V. Molokanov, Structure and Properties of Alloys of Ti2Cu-Zr2Cu Cross-section of Ti-Zr-Cu System in Amorphous and Crystalline States, Neorg. Mater., 1990, 26, p 960–964

    Google Scholar 

  59. C.L. Chiang, J.P. Chu, C.T. Lo, T.G. Nieh, Z.X. Wang, and W.H. Wang, Homogeneous Plastic Deformation in a Cu-based Bulk Amorphous Alloy, Intermetallics, 2004, 12, p 1057–1061

    Article  Google Scholar 

  60. H. Choi-Yim and R.D. Conner, Amorphous Alloys in the Cu-Hf-Ti System, J. Alloys Compd., 2008, 459, p 160–162

    Article  Google Scholar 

  61. C. Colinet, A. Pasturel, and K.H.J. Buschow, Enthalpies of formation of Ti-Cu Intermetallic and Amorphous Phases, J. Alloys Compd., 1997, 247, p 15–19

    Article  Google Scholar 

  62. K. Aoki and T. Masumoto, T. in Proceedings of the MRS International Meeting on Advanced Materials: June 1-June 3, 1988, Sunshine City, Ikebukuro, Tokyo, Japan, M. Doyama, ed., MRS, Pittsburgh, 1989, p 393–398

  63. G. Duan, D. Xu, and W.L. Johnson, High Copper Content Bulk Glass Formation in Bimetallic Cu-Hf System, Metall. Mater. Trans. A, 2005, 36, p 455–458

    Article  Google Scholar 

  64. J. Eckert, J. Das, K.B. Kim, F. Baier, M.B. Tang, W.H. Wang, and Z.F. Zhang, High Strength Ductile Cu-base Metallic Glass, Intermetallics, 2006, 14, p 876–881

    Article  Google Scholar 

  65. I.A. Figueroa, H.A. Davies, and I. Todd, Formation of Cu-Hf-Ti Bulk Metallic Glasses, J. Alloys Compd., 2007, 434–435, p 164–166

    Article  Google Scholar 

  66. J.M. Freitag, H. Guo, and Z. Altounian, Transport Properties of Isostructural Ni-Zr-Hf Metallic Glasses, Mater. Sci. Eng. A, 1997, 226–228, p 1042–1044

    Article  Google Scholar 

  67. T. Fukunaga, K. Suzuki, and U. Mizutani, Short Range Structure of (Cu40Ti60)x(Ni40Ti60)1–x(0 ⩽ x ⩽1) Ternary Metallic Glasses Studied by Neutron Diffraction, J. Non-Cryst. Sol., 1992, 150, p 10–14

    Article  ADS  Google Scholar 

  68. K.S. Gavrichev, L.N. Golushina, V.E. Gorbunov, A.I. Zaitsev, N.E. Zaitseva, B.M. Mogutnov, V.V. Molokanov, and A.V. Khoroshilov, The Absolute Entropy of Ni0.667Zr0.333 and Ni0.333Zr0.667 Amorphous Alloys, J. Phys. Condens. Matter., 2004, 16, p 1995–2002

    Article  ADS  Google Scholar 

  69. S. Hara, H.X. Huang, M. Ishitsuka, M. Mukaida, K. Haraya, N. Itoh, K. Kita, and K. Kato, Hydrogen Solution Properties in a Series of Amorphous Zr-Hf-Ni Alloys at Elevated Temperatures, J. Alloys Compd., 2008, 458, p 307–312

    Article  Google Scholar 

  70. M. Harmelin, J. Bigot, and M. Lasocka, Thermal Stability of Cu-Zr-M Glasses as a Function of an Average Atomization Enthalpy, in Rapidly Quenched Metals. S. Steeb and H. Warlimont, Eds., Elsevier, Amsterdam, 1985, p 335–338

    Chapter  Google Scholar 

  71. C.-H. Hwang, Y.-J. Ryeom, and K. Cho, Electrical Resistivity and Crystallization of Amorphous Cu-Ti Alloys, J. Less-Common Met., 1982, 86, p 187–194

    Article  Google Scholar 

  72. A. Inoue, W. Zhang, T. Zhang, and K. Kurosaka, High-strength Cu-based Bulk Glassy Alloys in Cu-Zr-Ti and Cu-Hf-Ti Ternary Systems, Acta Mater., 2001, 49, p 2645–2652

    Article  ADS  Google Scholar 

  73. A. Inoue and W. Zhang, Formation, Thermal Stability and Mechanical Properties of Cu-Zr and Cu-Hf Binary Glassy Alloy Rods, Mater. Trans., 2004, 45, p 584–587

    Article  Google Scholar 

  74. E. Kneller, Y. Khan, and U. Gorres, The Alloy System Copper-Zirconium. Pt. 2: Crystallization of the Glasses from Cu70Zr30 to Cu26Zr74, Z. Metallkd., 1986, 77, p 152–163

    Google Scholar 

  75. J.A. Kornfield, Annual Report and Continuation Request: T. 202003NSF. (MRSEC, California Institute of Technology, 2003)

  76. Y.K. Kovneristy and A.G. Pashkovskaya, Bulk Amorphization of Alloys in the Intermetallide Containing System Ti-Cu-Zr, in Amorf. (Stekloobraz) Met. Mater., Ros. Akad. Nauk, Baikov Inst. of Metallurgy, Moscow, 1992, p 153–157

  77. S.-W. Lee, M.-Y. Huh, E. Fleury, and J.-C. Lee, Crystallization-induced Plasticity of Cu-Zr Containing Bulk Amorphous Alloys, Acta Mater., 2006, 54, p 349–355

    Article  ADS  Google Scholar 

  78. X.J. Liu, X.D. Hui, and G.L. Chen, Thermodynamic Calculation and Experimental Investigation of Glass Formation in Zr-Ni-Ti Alloy System, Intermetallics, 2008, 16, p 262–266

    Article  Google Scholar 

  79. X.J. Liu, X.D. Hui, G.L. Chen, and T. Liu, Local Atomic Structures in Zr-Ni Metallic Glasses, Phys. Lett. A, 2009, 373, p 2488–2493

    Article  ADS  Google Scholar 

  80. D.V. Louzguine-Luzgin, L.V. Louzguina-Luzgina, G. Xie, S. Li, W. Zhang, and A. Inoue, Glass-forming Ability and Crystallization Behavior of Some Binary and Ternary Ni-based Glassy Alloys, J. Alloys Compd., 2008, 460, p 409–413

    Article  Google Scholar 

  81. B.F. Lu, J.F. Li, L.T. Kong, and Y.H. Zhou, Correlation between Mechanical Behavior and Glass Forming Ability of Zr-Cu Metallic Glasses, Intermetallics, 2011, 19, p 1032–1035

    Article  Google Scholar 

  82. X.L. Meng, Y.D. Fu, W. Cai, Q.F. Li, and L. Zhao, Cu Content and Annealing Temperature Dependence of Martensitic Transformation of Ti36Ni49-xHf15Cux Melt Spun Ribbons, Intermetallics, 2009, 17, p 1078–1084

    Article  Google Scholar 

  83. V.V. Molokanov, V.N. Chebotnikov, and Y.K. Kovneristyj, Structure and Properties of Alloys of Ti2Ni-Zr2Ni Cross Section of Ti-Zr-Ni System in Amorphous and Crystalline State, Izv. Akad. Nauk SSSR Neorg. Mater., 1989, 25, p 61–65

    Google Scholar 

  84. B.S. Murty, W.T. Kim, D.H. Kim, and K. Hono, Nanocrystalline Icosahedral Phase Formation in Melt Spun Ti-Zr-Ni Alloys, Mater. Trans., 2001, 42, p 372–375

    Article  Google Scholar 

  85. T. Nagase and Y. Umakoshi, Phase Stability of Amorphous and Crystalline Phases in Melt-spun Zr66.7Cu33.3 Alloy under Electron Irradiation, Scr. Mater., 2003, 48, p 1237–1242

    Article  Google Scholar 

  86. J. Reeve, G.P. Gregan, and H. Davies, Glass Forming Ability Studies in the Copper-Titanium System, in Rapidly Quenched Metals. S. Steeb and H. Warlimont, Eds., Elsevier, Amsterdam, 1985, p 203–206

    Chapter  Google Scholar 

  87. N. Resnina, S. Belyaev, and A. Shelyakov, Influence of the Dynamic Crystallization Conditions on the Martensitic Transformation in the Ti40.7Hf9.5Ni39.8Cu10 Shape Memory Alloy, Int. J. Mater. Res., 2009, 100, p 356–358

    Article  Google Scholar 

  88. R. Ristić, E. Babić, D. Pajić, K. Zadro, A. Kuršumović, I.A. Figueroa, H.A. Davies, I. Todd, L.K. Varga, and I. Bakonyi, Properties and Atomic Structure of Amorphous Early Transition Metals, J. Alloys Compd., 2010, 504, p S194–S197

    Article  Google Scholar 

  89. K. Russew, F. Sommer, P. Duhaj, and I. Bakonyi, Viscous Flow Behaviour of NixZr100-x Metallic Glasses from Ni30Zr70 to Ni64Zr36, J. Mater. Sci., 1992, 27, p 3565–3569

    Article  ADS  Google Scholar 

  90. M. Sakata, N. Cowlam, and H.A. Davies, Neutron Diffraction Measurement of the Structure Factor of a CuTi Metallic Glass, J. Phys. C Sol. State Phys., 1979, 9, p L235–L240

    Google Scholar 

  91. M. Sakata, N. Cowlam, and H.A. Davies, Chemical Short-range Order in Liquid and Amorphous Cu66Ti34 Alloys, J. Phys. F Met. Phys., 1981, 11, p L157–L162

    Article  ADS  Google Scholar 

  92. C.-L. Dai, H. Guo, Y. Li, and J. Xu, A New Composition Zone of Bulk Metallic Glass Formation in the Cu-Zr-Ti Ternary System and its Correlation with the Eutectic Reaction, J. Non Cryst. Solids, 2008, 354, p 3659–3665

    Article  ADS  Google Scholar 

  93. G.G. Woychik, D.H. Lowndes, and T.B. Massalski, Solidification Structures in Melt-spun and Pulsed Laser-quenched Cu-Ti Alloys, Acta Metall., 1985, 33, p 1861–1871

    Article  Google Scholar 

  94. X.F. Wu, Z.Y. Suo, Y. Si, L.K. Meng, and K.Q. Qiu, Bulk Metallic Glass Formation in a Ternary Ti-Cu-Ni Alloy System, J. Alloys Compd., 2008, 452, p 268–272

    Article  Google Scholar 

  95. D. Xu, B. Lohwongwatana, G. Duan, W.L. Johnson, and C. Garland, Bulk Metallic Glass Formation in Binary Cu-rich Alloy Series: Cu100-xZrx (x = 34, 36, 38.2, 40 at.%) and Mechanical Properties of Bulk Cu64Zr36 Glass, Acta Mater., 2004, 52, p 2621–2624

    Article  ADS  Google Scholar 

  96. Y. Yamada, Y. Itoh, and U. Mizutani, Electronic Structure of (Ni33Zr67)1-xXx (X ≡ Ti, V, Cr, Mn, Fe Co, Ni or Cu) Ternary Metallic Glasses Studied by Low Temperature Specific Heat Measurements, Mater. Sci. Eng., 1988, 99, p 289–293

    Article  Google Scholar 

  97. Y.J. Yang, D.W. Xing, C.P. Li, S.D. Wei, J.K. Sun, and Q.K. Shen, A New Way of Designing Bulk Metallic Glasses in Cu-Ti-Zr-Ni System, Mater. Sci. Eng. A, 2007, 448, p 15–19

    Article  Google Scholar 

  98. T. Zhang, A. Inoue, and T. Masumoto, Amorphous (Ti, Zr, Hf)-Ni-Cu Ternary Alloys with a Wide Supercooled Liquid Region, Mater. Sci. Eng. A, 1994, 181–182, p 1423–1426

    Article  Google Scholar 

  99. P.J. McCluskey and J.J. Vlassak, Glass Transition and Crystallization of Amorphous Ni-Ti-Zr Thin Films by Combinatorial Nano-calorimetry, Scr. Mater., 2011, 64, p 264–267

    Article  Google Scholar 

  100. A. Concustell, M. Zielinska, Á. Révész, L.K. Varga, S. Surinach, and M.D. Baró, Thermal Characterization of Cu60ZrxTi40−x Metallic Glasses (x=15, 20, 22, 25, 30), Intermetallics, 2004, 12, p 1063–1067

    Article  Google Scholar 

  101. S. Pauly, J. Das, N. Mattern, D.H. Kim, and J. Eckert, Phase Formation and Thermal Stability in Cu-Zr-Ti(Al) Metallic Glasses, Intermetallics, 2009, 17, p 453–462

    Article  Google Scholar 

  102. Y. Pan, H. Cao, L. Ding, C. Zhang, and Y.A. Chang, Novel Bulkier Copper-rich Ternary Metallic Glasses from Computational Thermodynamics, J. Non-Cryst. Solids, 2010, 356, p 2168–2171

    Article  ADS  Google Scholar 

  103. A.J. Kailath and S. Mandal, The Effect of Sn Addition on the Crystallization and Thermal Stability of Cu-Zr-Ti Metallic Glasses, J. Alloys Compd., 2012, 537, p 275–279

    Article  Google Scholar 

  104. A. Cai, X. Xiong, Y. Liu, W. An, G. Zhou, Y. Luo, T. Li, and X. Li, Structural and Thermal Sensitivity of Cu-Zr-Ti Amorphous Alloys to Tension, Sci. China Phys. Mech. Astron., 2013, 56, p 1606–1610

    Article  ADS  Google Scholar 

  105. S. Vincent, A.F. Khan, B.S. Murty, and J. Bhatt, Corrosion Characterization on Melt Spun Cu60Zr20Ti20 Metallic Glass: An Experimental Case Study, J. Non-Cryst. Solids, 2013, 379, p 48–53

    Article  ADS  Google Scholar 

  106. J. Ďurišin, D. Balga, K. Saksl, and A. Pietriková, Atomic Structure of Cu-Zr-Ti Metallic Glasses Subjected to High Temperature Annealing, J. Alloys Compd., 2014, 608, p 241–246

    Article  Google Scholar 

  107. B.J. Kim, Y.S. Yun, W.T. Kim, and D.H. Kim, Microstructure Evolution during Solidification of Cu-Zr-Ti Alloy Forming B2 Phase Particles Embedded in a Glassy Matrix, Met. Mater. Int., 2018, 24, p 926–933

    Article  Google Scholar 

  108. M.A. Turchanin, P.G. Agraval, A.N. Fesenko, and A.R. Abdulov, Thermodynamics of Liquid Alloys and Metastable Phase Transformations in the Copper—Titanium System, Powder Metall. Met. Ceram., 2005, 44, p 259–270

    Article  Google Scholar 

  109. A.A. Turchanin, I.A. Tomilin, M.A. Turchanin, I.V. Belokonenko, and P.G. Agraval, Enthalpies of Formation of Liquid, Amorphous, and Crystalline Phases in the Ni-Zr System, Zh. Fiz. Khim., 1999, 73, p 1911–1918

    Google Scholar 

  110. P.G. Agraval, L.A. Dreval, and M.A. Turchanin, Thermodynamic Properties of Iron Melts with Titanium, Zirconium, and Hafnium, Powder Metall. Met. Ceram., 2017, 55, p 707–716

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education and Science of Ukraine under the grant 0119U101646.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liya Dreval.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of a special topical focus in the Journal of Phase Equilibria and Diffusion on the Thermodynamics and Kinetics of High-Entropy Alloys. This issue was organized by Dr. Michael Gao, National Energy Technology Laboratory; Dr. Ursula Kattner, NIST; Prof. Raymundo Arroyave, Texas A&M University; and the late Dr. John Morral, The Ohio State University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turchanin, M., Agraval, P., Dreval, L. et al. Thermodynamics and Chemical Ordering of Liquid Cu-Hf-Ni-Ti-Zr Alloys. J. Phase Equilib. Diffus. 42, 623–646 (2021). https://doi.org/10.1007/s11669-021-00898-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-021-00898-6

Keywords

Navigation