Skip to main content
Log in

Experimental Investigation of the Ternary Ge-Sn-In and Ge-Sn-Zn Systems

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

This paper presents results of experimental examinations of alloys from the ternary Ge-Sn-In and Ge-Sn-Zn systems. Differential thermal analysis, scanning electron microscopy with energy dispersive spectroscopy and x-ray diffraction were used for the experimental investigation of the prepared samples. Obtained experimental results were compared with the thermodynamically extrapolated phase diagrams of the Ge-Sn-In and Ge-Sn-Zn ternary systems based on the thermodynamic parameters for the constitutive binary systems. A good agreement is seen, which suggests that it is not necessary to introduce new thermodynamic parameters for the ternary Ge-Sn-In and Ge-Sn-Zn systems. By using the proposed thermodynamic dataset, a liquidus projection and invariant reactions have been predicted for both investigated ternary systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. V. Ponnambalam and D.T. Morelli, A Novel Method to Synthesize Bulk Super Saturated Solid Solutions Ge1-Xsnx (X ≈ 5.0%), J. Alloys Compd., 2018, 740, p 42-46

    Article  Google Scholar 

  2. R. Goswami, S.B. Qadri, E.P. Gorzkowski, J.P. Yesinowski, and G.G. Jernigan, Stabilization of Diamond Cubic Sn Nanodots in Ge, Mater. Lett., 2017, 187, p 126-128

    Article  Google Scholar 

  3. P. Moontragoon, N. Vukmirovic, Z. Ikonic, and P. Harrison, Electronic Structure and Electronic Properties of Sn and SnGe Quantum Dots, J. Appl. Phys., 2008, 103, p 1037121-1037128

    Article  Google Scholar 

  4. W. Cao, S.L. Chen, F. Zhang, K. Wu, Y. Yang, Y.A. Chang, R. Schmid-Fetzer, and W.A. Oates, PANDAT Software with PanEngine, Calphad, 2009, 33, p 328-342

    Article  Google Scholar 

  5. Y. Feutelais, B. Legendre, and S.G. Fries, Thermodynamic Evaluation of the System Germanium-Tin, Calphad, 1996, 20(1), p 109-123

    Article  Google Scholar 

  6. P.Y. Chevalier, A Thermodynamic Evaluation of the Ge-In, Ge-Pb, Ge-Sb, Ge-Tl, and Ge-Zn Systems, Thermochim. Acta, 1989, 155, p 227-240

    Article  Google Scholar 

  7. B.J. Lee, C.S. Oh, and J.H. Shim, Thermodynamic Assessments of the Sn–In and SnBi Binary Systems, J. Electron. Mater., 1966, 25, p 983-991

    Article  ADS  Google Scholar 

  8. N. Moelans, K.C. Hari Kumar, and P. Wollants, Thermodynamic Optimization of the Lead-Free Solder System Bi-In-Sn-Zn, J. Alloys Compd., 2003, 360, p 98-106

    Article  Google Scholar 

  9. P.Y. Chevalier, A Thermodynamic Evaluation of the Germanium-Indium, Germanium-Lead, Germanium-Antimony, Germanium-Thallium and Germanium Zinc Systems, Thermochim. Acta, 1989, 155, p 227-240

    Article  Google Scholar 

  10. A.T. Dinsdale, A. Watson, A. Kroupa, J. Vrestal, A. Zemanova, J. Vizdal, in Atlas of Phase Diagrams for Lead-Free Soldering, 1st ed., (COST Office, Ed., Brno, Czech Republic, 2008), pp. 133–136 (ISBN 978-80-86292-28-1)

  11. V.T. Deshpande and D.B. Sirdeshmukh, Thermal Expansion of Tetragonal Tin, Acta Crystallogr., 1961, 14, p 355-356

    Article  Google Scholar 

  12. J. Thewlis and A.R. Davy, Thermal Expansion of Grey Tin, Nature, 1954, 174, p 1011

    Article  ADS  Google Scholar 

  13. A.S. Cooper, Precise Lattice Constants of Germanium, Aluminium, Gallium Arsenide, Uranium, Sulfur, Quartz and Sapphire, Acta Crystallogr., 1962, 15, p 578-582

    Article  Google Scholar 

  14. H.E. Swanson and E. Tatge, Standard X-ray Diffraction Powder Patterns, Phys. Rev. B: Condens. Matter Mater. Phys., 1997, 56, p 5170-5179

    Article  Google Scholar 

  15. S.C. Flower and G.A. Saunders, The Elastic Behavior of Indium Under Pressure and with Temperature uo to the Melting Point, Philos Mag B, 1990, 62, p 311-328

    Article  ADS  Google Scholar 

  16. V. Bhattacharya and K. Chattopadhyay, Phase Transformation in Nanoscale Indium-Tin Alloy Particles Embedded in Metallic Matrices, J. Nanosci. Nanotechnol., 2007, 7, p 1736-1742

    Article  Google Scholar 

  17. S.F. Bartram, W.G. Moffatt, and B.W. Roberts, The In-Sn Phase Diagram and Superconductivity in In3Sn, J Less Common Met., 1978, 62, p 9-12

    Article  Google Scholar 

  18. P. Fima and A. Gazda, Thermal Analysis of Selected Sn-Ag-Cu Alloys, J. Therm. Anal. Calorim., 2013, 112, p 731-737

    Article  Google Scholar 

  19. W.J. Boettinger, U.R. Kattner, K.-W. Moon, J.H. Perepezko, in DTA and Heat-Flux DSC Measurements of Alloy Melting and Freezing (NIST recommended practice guide, Special publication 960-15, NIST, 2006)

Download references

Acknowledgments

This work has been supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant No. OI172037). The authors appreciate the language assistance provided by Dr. Andrew Watson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milena Premović.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tošković, N., Minić, D., Premović, M. et al. Experimental Investigation of the Ternary Ge-Sn-In and Ge-Sn-Zn Systems. J. Phase Equilib. Diffus. 39, 933–943 (2018). https://doi.org/10.1007/s11669-018-0696-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-018-0696-2

Keywords

Navigation