Skip to main content
Log in

Thermodynamic Assessments of the Ni-Cr-Ti System and Atomic Mobility of Its fcc Phase

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Thermodynamic assessments have been performed for the Ni-Ti binary and Ni-Cr-Ti ternary system by the CALPHAD method. Combining the experimental and ab initio calculated data on the enthalpies of formation of Ni-Ti compounds, a better description for Ni-Ti phases has been obtained. Based on the new assessments of the binary sub-systems and the recent experimental data on phase equilibria, a reassessment of the Ni-Cr-Ti system was carried out. Apart from the thermodynamic assessments, the interdiffusion coefficients for the fcc phase of the binary Ni-Ti were re-optimized and the ternary Ni-Cr-Ti system were determined experimentally over a temperature range from 1123 to 1273 K employing the diffusion-couple technique. Subsequently, atomic mobility data for the fcc phase of the Ni-Cr-Ti system were assessed and most diffusivity data were satisfactorily described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y.H. Tan and Y. Du, Isothermal Section at 927 C of Cr-Ni-Ti System, Trans. Nonferrous Met. Soc., 2007, 17, p 711-714 (in Chinese)

    Article  Google Scholar 

  2. J.R. Davis, Properties and Selection Nonferrous Alloys and Special Purpose Materials. Materials Handbook, ASM International, 1990, p 436-441

  3. J.A. van Beek, A.A. Kodentsov, and F.J.J. van Loo, ChemInform Abstract: Phase Equilibria in the Ni-Cr-Ti System at 850°C, Alloys Compd., 1998, 279, p 218-223

    Article  Google Scholar 

  4. I. Isomäki, M. Hämäläinen, and M. Gasik, Thermodynamic Assessment of the Ternary Ni-Ti-Cr System, J. Alloy. Compd., 2012, 543, p 12-18

    Article  Google Scholar 

  5. B.J. Lee, On the Stabiliity of Cr Carbides, CALPHAD, 1992, 16(2), p 121-149

    Article  Google Scholar 

  6. T. Tokunaga, K. Hashima, H. Ohtani, and M. Hasebe, Thermodynamic Analysis of the Ni-Si-Ti System Using Thermochemical Properties Determined from Ab Initio, Calculations, Materials Transactions, 2004, 45(5), p 1507-1514

    Article  Google Scholar 

  7. G. Ghosh, Thermodynamic and Kinetic Modeling of the Cr-Ti-V System, Journal of Phase Equilibria, 2002, 23(4), p 310

    Article  ADS  Google Scholar 

  8. J.D. Keyzer, G. Caccismani, N. Dupin, and P. Wollants, Thermodynamic Modeling and Optimization of the Fe-Ni-Ti System, CALPHAD, 2009, 33(1), p 109-123

    Article  Google Scholar 

  9. J. Pavlů, J. Vreat’ál, and M. Šob, Thermodynamic Modeling of Laves Phases in the Cr-Hf and Cr-Ti Systems: Reassessment Using First-Principles Results, CALPHAD, 2010, 34(2), p 215-221

    Article  Google Scholar 

  10. N.Q. Zhu, J.C. Li, X.G. Lu, and Y.L. He, Experimental and Computational Study of Diffusion Mobilities for fcc Ni-Cr-Mo Alloys, Metall. Mater. Trans. A, 2015, 46(11), p 5444-5455

    Article  Google Scholar 

  11. J.O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman, Thermo-Calc & DICTRA, Computational Tools for Materials Science, CALPHAD, 2002, 26, p 273-312

    Article  Google Scholar 

  12. A.T. Dinsdale, SGTE Data for Pure Elements, CALPHAD, 1991, 15, p 317-425

    Article  Google Scholar 

  13. M. Hillert, Phase Relations in the ZrO2 -Nd2O3 -Y2O3 System: Experimental Study and Advanced Thermodynamic Modeling, J. Alloys Compounds, 2001, 320, p 161-176

    Article  Google Scholar 

  14. A. Borgenstam, A. Engström, L. Höglund, and J. Ågren, DICTRA, A Tool for Simulation of Diffusional Transformations in Alloys, J. Phase Equilib. Diffus., 2000, 21, p 269-280

    Article  Google Scholar 

  15. J.O. Andersson and J. Ågren, Models for Numerical Treatment of Multicomponent Diffusion in Simple Phases, J. Appl. Phys., 1992, 72, p 1350-1355

    Article  ADS  Google Scholar 

  16. Y. Wang, N.Q. Zhu, H. Wang, and X.G. Lu, Interdiffusion and Diffusion Mobility for fcc Ni-Co-Al Alloys, Metall. Mater. Trans. A, 2017, 48, p 943-947

    Google Scholar 

  17. J.F. Wang, Y. Wang, N.Q. Zhu, and X.G. Lu, Experimental and Computational Study of Interdiffusion for fcc Ni-Co-W Alloys, J. Phase Equilib. Diffus., 2017, 38, p 37-50

    Article  Google Scholar 

  18. Y. Wang and X.G. Lu, Interdiffusion and Diffusion Mobility for Fcc Ni-Co-Mo Alloys, J. Phase Equilib. Diffus., 2017, 38, p 656-664

    Article  Google Scholar 

  19. J.L. Murray, Phase Diagrams of Binary Titanium Alloys, ASM International, Materials Park, 1987, OH, p. 197–211, 59–68

  20. L. Kaufman and H. Nesor, Coupled Phase Diagrams and Themochemical Data for Transition Metal Binary System-II, CALPHAD, 1978, 2(1), p 81-108

    Article  Google Scholar 

  21. P. Bellen, K.C.H. Kumar, and P. Wollants, Thermodynamic Assessment of the Ni-Ti Phase Diagram, Z. Metallkd., 1996, 87, p 972-978

    Google Scholar 

  22. W. Tang, B. Sundman, R. Sandström, and C. Qiu, New Modelling of the B2 Phase and its Associated Martensitic Transformation in the Ti-Ni System, Acta material, 1999, 47(12), p 3457-3468

    Article  Google Scholar 

  23. A. Pastural, C. Colinet, M.D. Nguyen, A.T. Paxton, and M. van Schilfgaarde, Electronic Structure and Phase Stability Study in the Ni-Ti System, Phys. Rev., 1995, B52, p 15176-15190

    Article  ADS  Google Scholar 

  24. K. Santhy and K.C. Hari Kumar, Thermodynamic Assessment of Mo-Ni-Ti Ternary System by Coupling First-Principle Calculations with CALPHAD Approach, Intermetallics, 2010, 18(9), p 1713-1721

    Article  Google Scholar 

  25. O. Kubaschewski, H. Villa, and W.A. Dench, The Reaction of Titanium Tetrachloride with Hydrogen in Contact with Various Refractories, Trans. Faraday Soc., 1956, 52, p 214-222

    Article  Google Scholar 

  26. J.C. Gachon, M. Notin, and J. Hertz, The Enthalpy of Mixing of the Intermediate Phases in the Systems FeTi, CoTi, and NiTi by Direct Reaction Calorimetry, Thermochim. Acta, 1981, 48, p 155-164

    Article  Google Scholar 

  27. G.A. Levshin and V.I. Alekseev, Thermodynamic Properties of Nickel-Titanium System Alloys, Russ. J. Phys. Chem., 1979, 53, p 437-439

    Google Scholar 

  28. P.A. Gomozov, Y.V. Zasypalov, and B.M. Mogutnov, Enthalpies of Formation of Intermetallic Compounds with the CsCl Structure (CoTi, CoZr, CoAl, NiTi), Russ. J. Phys. Chem., 1986, 60, p 1122-1124

    Google Scholar 

  29. H.C. Yi and J.J. Moore, Combustion Synthesis of TiNi Intermetallic Compounds Part 1: Determination of Heat of Fusion of TiNi and Heat Capacity of Liquid TiNi, J. Mater. Sci. Lett., 1989, 24, p 3449-3455

    Article  ADS  Google Scholar 

  30. Q.T. Guo and O.J. Kleppa, Standard Enthalpies of Formation of Some Alloys Formed Between Group IV Elements and Group VIII, Elements, Determined by Hightemperature Direct Synthesis Calorimetry II. Alloys of (Ti, Zr, Hf) with (Co, Ni), J. Alloys. Compd., 1998, 269, p 181-186

    Article  Google Scholar 

  31. C. C. Jia, K. Ishida and T. Nishizawa, Experimental Methods of Phase Diagram Determination, TMS. Publisher, 1994, PA, p. 31–38

  32. D.M. Poole and W. Hume-Rothery, The Equilibrium Diagram of the System Nickel-Titanium, J. Inst. Metals, 1954, 83, p 473-480

    Google Scholar 

  33. A. Taylor and R.W. Floyd, The Constitution of Nickel-Rich Alloys of the Nickel-Chromium-Aluminium System, Inst. Metals, 1951, 80, p 577-587

    Google Scholar 

  34. Y.A. Bagariatskii and Y.D. Tyapkin, On the Atomic Structure of Solid Solutions of Chromium in Nickel, Z. Neorg Khim, 1958, p. 151–158.

  35. G.R. Purdy and J.G. Parr, A Study of the Titanium-Nickel System Between Ti2Ni and TiNi, Trans. AIME, 1961, 221, p 636-639

    Google Scholar 

  36. G.F. Bastin and G.D. Rieck, Diffusion in the Titanium-Nickel System: I. Occurrence and Growth of the Various Intermetallic Compounds, Metall. Trans, 1974, 5, p 1817-1826

    Article  Google Scholar 

  37. R. Vogel and H.S. Wallbaum, Das System Eisen‐Nickel‐Nickeltitanid Ni3Ti‐Eisentitanid Fe2 Ti, Arch. Eisenhüttenwes, 1938, 12, p 299-304

    Article  Google Scholar 

  38. H. Margolin, E. Ence, and J.P. Nielsen, The Titanium-nickel Phase Diagram, Trans. AIME, 1953, 197, p 243-247

    Google Scholar 

  39. M.K. McQuillan, A Provisional Constitutional Diagram of the Chromium Titanium System, J. Inst. Met., 1951, 80, p 379-390

    Google Scholar 

  40. F.B. Cuff, N.J. Grant, and C.F. Floe, Titanium Chromium Phase Diagram, J. Met., 1952, 4, p 848-853

    Google Scholar 

  41. R.J. Van Thyne, H.D. Kessler, and M. Hansen, The Systems Titanium Chromium and Titanium-Iron, Trans. Am. Soc. Met., 1952, 44, p 974-989

    Google Scholar 

  42. F. Ermanis, P.A. Farrar, and H. Margolin, A Reinvestigation of the Systems Ti-Cr and Ti-V, Trans. Metall. Soc. AIME, 1961, 221, p 904-908

    Google Scholar 

  43. V.S. Mikheyev and T.S. Chernova, Solubility of Chromium in a-Titanium and Mechanical Properties of the Binary System Titanium-Chromium, in Titan I Ego Splavy AN SSSR Inst., 1962, p. 68–73

  44. V.N. Svechnikov and Y.A. Kocherzhinsky, Consitution Diagram of Chromium Titanium, Probl. Phys. Met. Metall., 1962, 32, p 132-135

    Google Scholar 

  45. P.A. Farrar and H. Margolin, A Re-Investigation of the Chromium Rich Region of the Titanium Chromium System, Trans Metall Soc AIME, 1963, 227, p 1342-1345

    Google Scholar 

  46. V.N. Svechnikov, M.Y. Teslyuk, A.Y. Kocherzhinsky, V.V. Petkov, and E.V. Dabizha, Three Modifications of TiCr2, Dopov Akad Nauk Ukr RSR, 1970, 32, p 837-842

    Google Scholar 

  47. S.A. Minaeva, B.P. Budberg and A.L. Gavze, Phase Structure of Ti-Cr Alloys, in Izv Akad Nauk SSSR Met, 1971

  48. A. Taylor, Constitution of Nickel-Rich Quaternary Alloys of the Ni-Cr-Ti-Al System, Trans. AIME, 1956, 206, p 1356-1362

    Google Scholar 

  49. J.S. Kirkaldy and D.J. Young, Diffusion in the condensed state, in the Institute of Metals, 1987, London, p. 83–87

  50. M. Liu, L.J. Zhang, W.M. Chen, and J.H. Xin, Diffusivities and Atomic Mobilities in fcc_A1 Ni–X (X = Ge, Ti and V) Alloys, CALPHAD, 2013, 41, p 108-118

    Article  Google Scholar 

  51. D. Bergner, Zur diffusion von Hf und Ti in Ni, Kristall Technik, 1972, 7, p 651-656

    Article  Google Scholar 

  52. R.A. Swalin and A. Martin, Solute Diffusion in Nickel-Base Substitutional Solid Solutions, Trans. AIME, 1956, 206, p 567-572

    Google Scholar 

  53. S.B. Jung, T. Yamane, Y. Minamino, K. Hirao, H. Araki, and S. SajI, Interdiffusion and Its Size Effect in Nickel Solid Solutions of Ni-Co, Ni-Cr and Ni-Ti Systems, J. Mater. Lett., 1992, 11, p 1333-1337

    Article  Google Scholar 

  54. N. Komai, M. Watanabe, Z. Horita, T. Sano, and M. Nemoto, Analytical Electron Microscopy Study of Ni/Ni–8 mol% Ti Diffusion Couples, Acta Mater., 1998, 46, p 4443-4451

    Article  Google Scholar 

  55. C.E. Campbell, Assessment of the Diffusion Mobilites in the γ’ and B2 Phases in the Ni-Al-Cr System, Acta Mater., 2008, 56(16), p 4277-4290

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the National Key R&D Program of China (Grant Number: 2017YFB0701502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Gang Lu.

Additional information

This invited article is part of a special issue of the Journal of Phase Equilibria and Diffusion in honor of Prof. Zhanpeng Jin’s 80th birthday. The special issue was organized by Prof. Ji-Cheng (JC) Zhao, The Ohio State University; Dr. Qing Chen, Thermo-Calc Software AB; and Prof. Yong Du, Central South University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Wang, Y., Wang, J. et al. Thermodynamic Assessments of the Ni-Cr-Ti System and Atomic Mobility of Its fcc Phase. J. Phase Equilib. Diffus. 39, 597–609 (2018). https://doi.org/10.1007/s11669-018-0650-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-018-0650-3

Keywords

Navigation