Skip to main content
Log in

Phase Equilibria at 600 °C of the Y-Zn-Zr System

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The phase equilibria at 600 °C of the Y-Zn-Zr system were determined via investigating the reaction of Y-Zr alloy with Zn vapor and the equilibrated ternary alloys, by means of the electron probe microanalyses and x-ray diffraction. Two ternary phases, which are denoted as τ1 and τ2, were found at 600 °C. The τ1 phase was deduced to have a triclinic structure. It has a homogeneity range of Y3.6-5.8Zn88.7-89.8Zr4.8-6.6 and is located approximately between Zr5Zn39 and Y2Zn17. The τ2 phase was determined to have a homogeneity range of Y9.0-9.9Zn74.0-75.0Zr15.6-16.6 (in at.%). The solubility of Zr in YZn2 was measured to be up to 10.4 at.% Zr. Thirteen three-phase equilibria were well determined. Six of them involving the τ1 or τ2 were found. The isothermal section at 600 °C was constructed over the entire composition range of the Y-Zn-Zr system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. X.H. Chen, L.Z. Liu, J. Liu, and F.S. Pan, Microstructure, Electromagnetic Shielding Effectiveness and Mechanical Properties of Mg-Zn-Y-Zr Alloys, Mater. Des., 2015, 65, p 360-369

    Article  Google Scholar 

  2. Q. Chen, J. Lin, D.Y. Shu, C.K. Hu, Z.D. Zhao, F. Kang, S.H. Huang, and B.G. Yuan, Microstructure Development, Mechanical Properties and Formability of Mg-Zn-Y-Zr Magnesium Alloy, Mater. Sci. Eng., A, 2012, 554, p 129-141

    Article  Google Scholar 

  3. Y.W. Song, D.Y. Shan, R.S. Chen, and E.-H. Han, Effect of Second Phases on the Corrosion Behavior of Wrought Mg-Zn-Y-Zr Alloy, Corros. Sci., 2010, 52(5), p 1830-1837

    Article  Google Scholar 

  4. D.K. Xu, L. Liu, Y.B. Xu, and E.H. Han, Effect of Microstructure and Texture on the Mechanical Properties of the As-Extruded Mg-Zn-Y-Zr Alloys, Mater. Sci. Eng., A, 2007, 443, p 248-256

    Article  Google Scholar 

  5. J.F. Wang, S. Gao, P.F. Song, X.F. Huang, Z.Z. Shi, and F.S. Pan, Precipitation Behavior and Mechanical Properties of a Mg-Zn-Y-Zr Alloy Processed by Thermo-Mechanical Treatment, J. Alloys Compd., 2005, 395, p 213-219

    Article  Google Scholar 

  6. X.H. Shao, Z.Q. Yang, and X.L. Ma, Strengthening and Toughening Mechanisms in Mg-Zn-Y Alloy with a Long Period Stacking Ordered Structure, Acta Mater., 2010, 58(14), p 4760-4771

    Article  Google Scholar 

  7. J.F. Nie, Y.M. Zhu, and A.J. Morton, On the Structure, Transformation and Deformation of Long-Period Stacking Ordered Phases in Mg-Y-Zn Alloys, Metall. Mater. Trans. A, 2014, 45, p 3338-3348

    Article  Google Scholar 

  8. K. Kishida, K. Nagai, A. Matsumoto, A. Yasuhara, and H. Inui, Crystal Structures of Highly-Ordered Long-Period Stacking-Ordered Phases with 18R, 14H and 10H-Type Stacking Sequences in the Mg-Zn-Y System, Acta Mater., 2015, 99, p 228-239

    Article  Google Scholar 

  9. B.J. Lv, J. Peng, L.L. Zhu, Y.J. Wang, and A.T. Tang, The Effect of 14H LPSO Phase on Dynamic Recrystallization Behavior and Hot Workability of Mg-2.0Zn-0.3Zr-5.8Y Alloy, Mater. Sci. Eng., A, 2014, 599, p 150-159

    Article  Google Scholar 

  10. Z.P. Luo, H.X. Sui, and S.Q. Zhang, On the Stable Mg-Zn-Y Quasicrystals, Metall. Mater. Trans. A, 1996, 27, p 1779-1784

    Article  Google Scholar 

  11. J.F. Liu, Z.Q. Yang, and H.Q. Ye, In Situ Transmission Electron Microscopy Investigation Of Quasicrystal-Crystal Transformations in Mg-Zn-Y Alloys, J. Alloys Compd., 2015, 621, p 179-188

    Article  Google Scholar 

  12. G. Shao, V. Varsani, and Z. Fan, Thermodynamic modelling of the Y-Zn and Mg-Zn-Y systems, CALPHAD, 2006, 30, p 286-295

    Article  Google Scholar 

  13. J. Gröbner, A. Kozlov, X.Y. Fang, J. Geng, J.F. Nie, and R. Schmid-Fetzer, Phase Equilibria and Transformations in Ternary Mg-Rich Mg-Y-Zn Alloys, Acta Mater., 2012, 60, p 5948-5962

    Article  Google Scholar 

  14. Z.J. Zhu and A.D. Pelton, THERMODYNAMIC MOdeling of the Y-Mg-Zn, Gd-Mg-Zn, Tb-Mg-Zn, Dy-Mg-Zn, Ho-Mg-Zn, Er-Mg-Zn, Tm-Mg-Zn and Lu-Mg-Zn Systems, J. Alloy. Compd., 2015, 652, p 426-443

    Article  Google Scholar 

  15. K.M. Cheng, H. Zhou, Y. Du, S.H. Liu, and H.H. Xu, Experimental Investigation and Thermodynamic Description of the Mg-Y-Zr System, J. Mater. Sci., 2014, 49(2), p 7124-7132

    Article  ADS  Google Scholar 

  16. X. Zhang, Y.N. Zhang, D. Kevorkov, and M. Medraj, Experimental Investigation of the Mg-Zn-Zr Ternary System at 450 °C, J. Alloy. Compd., 2016, 680, p 212-225

    Article  Google Scholar 

  17. R. Arroyave and Z.K. Liu, Thermodynamic Modelling of the Zn-Zr System, CALPHAD, 2006, 30, p 1-13

    Article  Google Scholar 

  18. M.J. Bu, P.S. Wang, H.H. Xu, S.H. Liu, C.S. Sha, Y. Du, F.S. Pan, and A.T. Tang, Experimental Investigation and Thermodynamic Modeling of the Zr-Y System, J. Mining Metall. B, 2010, 46(2), p 181-192

    Article  Google Scholar 

  19. L. Akselrud and Y. Grin, WinCSD: Software Package for Crystallographic Calculations (Version 4), J. Appl. Cryst., 2014, 47(2), p 803-805

    Article  Google Scholar 

  20. X.-A. Chen and W. Jeitschko, Preparation, Properties, and Crystal Structure of Zr5Zn39, a Vacancy Variant of the Ce5Mg41-Type, and Structure Refinement of ZrZn22, J. Solid State Chem., 1996, 121(1), p 95-104

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No. 50971135) and the Sino-German Center for Promotion of Science (Grant No. GZ591).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honghui Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Yu, T., Chen, HL. et al. Phase Equilibria at 600 °C of the Y-Zn-Zr System. J. Phase Equilib. Diffus. 38, 589–599 (2017). https://doi.org/10.1007/s11669-017-0556-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-017-0556-5

Keywords

Navigation