Skip to main content
Log in

Effect of Small Amount of Manganese on the Interdiffusivities in Fe-Al Alloys

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The ability to weld aluminum and steel sheets depends strongly on the formation of intermetallic phases; a process that is, in turn, controlled by the interdiffusion of iron and aluminum across the welded interface. Understanding the interdiffusion behavior, and how it is influenced by tertiary elements such as manganese, will allow for better prediction of the properties of the spot weld. Hence, interdiffusion coefficients and activation energies for interdiffusion were determined in the α solid solution and B2 intermetallic phases of Fe-Al alloys in the presence of 1.5-2 at.% manganese with pseudo-binary diffusion couples investigated at 900-1095 °C. The interdiffusion coefficients in α were found to increase in the presence of Mn at all temperatures compared with those reported in the binary Fe-Al alloys. The activation energies for interdiffusion in α are correspondingly lower than those in the binary Fe-Al alloys. The increase in the main interdiffusion coefficients in the presence of Mn indicates that diffusional interactions between Fe and Al are increased in the presence of Mn. The expected increase in diffusional interactions of Fe and Al are found to be consistent with the thermodynamic interactions between Fe and Al in the binary Fe-Al and ternary Fe-Al-Mn system as estimated from the literature. The presence of Mn is found to decrease the solubility of Al in the α solid solution, which, in turn, is expected to decrease the growth rate of the intermetallic at the interface between steel and aluminum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G. Sierra, P. Peyre, F. Deschaux-Beaume, D. Stuart, and G. Fras, Steel to Aluminum Key-Hole Laser Welding, Mater. Sci. Eng. A, 2007, 447A, p 197-208

    Article  Google Scholar 

  2. E. Taban, J.E. Gould, and J.C. Lippold, Dissimilar Friction Welding of 6061-T6 Aluminum and AISI, 1018 Steel: Properties and Microstructural Characterization, Mater. Des., 2010, 31, p 2305-2311

    Article  Google Scholar 

  3. K. Shibata, S. Morozumi, and S. Koda, Formation of the Alloy Layer in the Fe-Al Diffusion Couple, J. Jpn. Inst. Met., 1966, 30, p 382-388

    Google Scholar 

  4. S. Kobayashi and T. Yakou, Control of Intermetallic Compound Layers at Interface Between Steel and Aluminum by Diffusion-Treatment, Mater. Sci. Eng. A, 2002, 338(1-2), p 44-53

    Article  Google Scholar 

  5. M.V. Akdeniz, A.O. Mekharbov, and T. Yilmaz, The Role of Si Addition on the Interfacial Interaction in Fe-Al Diffusion Layer, Scr. Metall. Mater., 1994, 31(12), p 1723-1728

    Article  Google Scholar 

  6. A. Hirose, H. Imaeda, M. Kondo, and K.F. Kobayashi, Influence of Alloying Elements on Interfacial Reaction and Strength of Aluminum/Steel Dissimilar Joints for Light Weight Car Body, Mater. Sci. Forum, 2007, 539-543, p 3888-3893

    Article  Google Scholar 

  7. M.V. Akdeniz and A.O. Mekharbov, The Effect of Substitutional Impurities on the Evolution of Fe-Al Diffusion Layer, Acta Mater., 1998, 46(4), p 1185-1192

    Article  Google Scholar 

  8. M.A. Dayananda and C.W. Kim, Zero-Flux Planes and Flux Reversals in Cu-Ni-Zn Diffusion Couples, Metall. Trans. A, 1979, 10, p 1333-1339

    Article  Google Scholar 

  9. K.N. Kulkarni, A.M. Girgis, L.R. Ram-Mohan, and M.A. Dayananda, A Transfer Matrix Analysis of Quaternary Diffusion, Philos. Mag., 2007, 87, p 853-872

    Article  ADS  Google Scholar 

  10. K. Kulkarni and G.P.S. Chauhan, Investigations of Quaternary Interdiffusion in a Constituent System of High Entropy Alloys, AIP Adv., 2015, 5, p 097162 1-097162 7

    Article  Google Scholar 

  11. K. Nishida, T. Yamamoto, and T. Nagata, On the Interdiffusion in α-Solid Solution of the Fe-Al System in Al Vapor, Trans. Jpn. Inst. Met., 1971, 12, p 310-316

    Article  Google Scholar 

  12. Y.H. Sohn and M.A. Dayananda, Interdiffusion, Intrinsic Diffusion and Vacancy Wind Effect in Fe-Al Alloys at 1000 °C, Scripta Mater., 1998, 40(1), p 79-84

    Article  Google Scholar 

  13. M. Salamon, D. Fuks, and H. Mehrer, Interdiffusion and Al Self-Diffusion in Iron Aluminides, Defects Diffus. Forum, 2005, 237-240, p 444-449

    Article  Google Scholar 

  14. L. Onsager, Theories and Problems of Liquid Diffusion, Ann. N. Y. Acad. Sci., 1945, 46, p 241-265

    Article  ADS  Google Scholar 

  15. A. Paul, A Pseudobinary Approach to Study Interdiffusion and the Kirkendall Effect in Multicomponent Systems, Philos. Mag., 2013, 93(18), p 2297-2315

    Article  ADS  Google Scholar 

  16. MultiDiflux: M. A. Dayananda and L. R. Ram-Mohan, Purdue University, 2006, https://engineering.purdue.edu/MSE/FacStaff/Faculty/dayananda.wshtml

  17. U.R. Kattner, “Aluminum-Iron Binary Alloy Phase Diagram”, in Binary Alloy Phase Diagrams (ASM International, Materials Park, 1990), p. 147

  18. J.S. Kirkaldy and D.J. Young, “Diffusion in Condensed State,” Institute of Metals, 1987.

  19. P.D. Desai, Thermodynamic Properties of Selected Binary Aluminum Alloy Systems, J. Phys. Chem. Ref. Data, 1987, 16(1), p 109-124

    Article  ADS  Google Scholar 

  20. R. Umino, X.J. Liu, Y. Sutou, C.P. Wang, I. Ohnuma, R. Kainuma, and K. Ishida, Experimental Determination and Thermodynamic Calculation of Phase Equilibria in the Fe-Mn-Al System, J. Phase Equilib. Diffus., 2006, 27(1), p 54-62

    Article  Google Scholar 

  21. R.D. Sisson and M.A. Dayananda, Diffusion Structures in Multiphase Cu-Ni-Zn Couples, Metallurg. Trans., 1972, 3(3), p 647-651

    Article  ADS  Google Scholar 

  22. B. Dangi, “Effect of Ternary Alloying Elements on Growth Kinetics of Intermetallic Layers Formed at the interface of iron and Al6061 Aluminum Alloy”. Master’s Thesis; Indian Institute of Technology Kanpur, 2016

  23. T. DebRoy and S.A. Davis, Physical Processes in Fusion Welding, Rev. Mod. Phys., 1995, 67A(1), p 85-112

    Article  ADS  Google Scholar 

  24. A. Fellman and V. Kujanpaa, The effect of Shielding Gas Composition on Welding Performance and Weld Properties in Hybrid CO2 Laser-Gas Metal Arc Welding of Carbon Manganese Steel, J. Laser Appl., 2006, 18(1), p 12-20

    Article  Google Scholar 

Download references

Acknowledgments

General Motors is acknowledged for financially supporting this work. Blair Carlson and David Sigler are both appreciated for discussions and support for experimental methods and motivations for this work. Mr. Siva Kumar and Mr. Parikshit Yadav from Advanced Center for Materials Sciences (ACMS) at IIT Kanpur are acknowledged for facilitating the EPMA usage. Authors are thankful to Prof. Dayananda from Purdue University for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaustubh N. Kulkarni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, S., Verma, V., Brown, T.W. et al. Effect of Small Amount of Manganese on the Interdiffusivities in Fe-Al Alloys. J. Phase Equilib. Diffus. 38, 135–142 (2017). https://doi.org/10.1007/s11669-017-0529-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-017-0529-8

Keywords

Navigation