Skip to main content
Log in

A Study of Interdiffusion in the Fe-C/Ti System Under Equilibrium and Nonequilibrium Conditions

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the present study, diffusion behavior under equilibrium and nonequilibrium conditions in a Fe-C/Ti system is studied in the temperature range of 773 K to 1073 K (500 °C to 800 °C). A defect-free weld joint between mild steel (MS) (Fe-0.14 pct C) and Ti Grade 2 obtained by friction welding is diffusion annealed for various durations to study the interdiffusion behavior under equilibrium conditions, while an explosive clad joint is used to study interdiffusion under nonequilibrium conditions. From the elemental concentration profiles obtained across the MS-Ti interface using electron-probe microanalysis and imaging of the interface, the formation of distinct diffusion zones as a function of temperature and time is established. Concentration and temperature dependence of the interdiffusion coefficients (D(c)) and activation energies are determined. Under equilibrium conditions, the change in molar volume with concentration shows a close match with the ideal Vegard’s law, whereas a negative deviation is observed for nonequilibrium conditions. This deviation can be attributed to the formation of secondary phases, which, in turn, alters the D(c) values of diffusing species. Calculations showed that the D 0 and activation energy for interdiffusion under equilibrium is on the order of 10−11 m2/s and 147 kJ/mol, whereas it is far lower in the nonequilibrium case (10−10 m2/s and 117 kJ/mol) in the compositional range of 40 to 50 wt pct Fe, which also manifests as accelerated growth kinetics of the different diffusion zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. JMATPRO is a trademark of M/s Sente Software Ltd, UK.

References

  1. A. Ravi Shankar, R.K. Dayal, R. Balasubramaniam, V.R. Raju, R. Mythili, S. Saroja, M. Vijayalakshmi, and V.S. Raghunathan: J. Nucl. Mater., 2008, vol. 327, pp. 277–88.

    Article  Google Scholar 

  2. Baldev Raj and U. Kamachi Mudali: Progr. Nucl. Energy, 2006, vol. 48, pp. 283–313.

    Google Scholar 

  3. U. KamachiMudali, B.M. AnandaRao, K. Shanmugam, R. Natarajan, BaldevRaj: J. Nucl. Mater., 2003, vol. 321, pp. 40–48.

    Article  Google Scholar 

  4. C. Sudha, T.N. Prasanthi, S. Murugesan, S. Saroja, P. Kuppusami, and M. Vijayalakshmi: Sci. Technol. Welding Joining, 2011, vol. 16, pp. 133–39.

    Article  Google Scholar 

  5. T.N. Prasanthi, C. Sudha, P.K. Parida, A. Das Gupta, and S. Saroja: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 1519–36.

    Article  Google Scholar 

  6. M. Ghosh and S. Chatterjee: Mater. Sci. Eng. A, 2003, vol. 358, pp. 152–58.

    Article  Google Scholar 

  7. S. Kundu, S. Chatterjee, D. Olson, and B. Mishra: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 2053–60.

    Article  Google Scholar 

  8. M. Ghosh, K. Bhanumurthy, G.B. Kale, J. Krishnan, and S. Chatterjee: J. Nucl. Mater., 2003, vol. 322, pp. 235–41.

    Article  Google Scholar 

  9. G.B. Kale, K. Bhanumurthy, K.C. Ratnakala, and S.K. Khera: J. Nucl. Mater., 1986, vol. 138, pp. 73–80.

    Article  Google Scholar 

  10. S. Mitra, J.P. Stark, and S.R. Tatti: J. Phys. Chem. Solids, 1991, vol. 52, pp. 463–65.

    Article  Google Scholar 

  11. R.V. Patil, G.B. Kale, and S.P. Garg: J. Nucl. Mater., 1995, vol. 223, pp. 169–73.

    Article  Google Scholar 

  12. K. Bhanumurthy, G.B. Kale, and S.K. Khera: J. Nucl. Mater., 1991, vol. 185, pp. 208–13.

    Article  Google Scholar 

  13. G.B. Kale, R.V. Patil, and P.S. Gawade: J. Nucl. Mater., 1998, vol. 257, pp. 44–50.

    Article  Google Scholar 

  14. A. Laik, K. Bhanumurthy, and G.B. Kale: J. Nucl. Mater., 2002, vol. 305, pp. 124–33.

    Article  Google Scholar 

  15. K. Bhanumurthy, G.B. Kale, S.K. Khera, and M.K. Asundi: J. Nucl. Mater., 1989, vol. 16, pp. 179–83.

    Article  Google Scholar 

  16. G.B. Kale, K. Bhanumurthy, K.C. Ratnakala, and S.K. Khera: J. Nucl. Mater., 1986, vol. 138, pp. 73–80.

    Article  Google Scholar 

  17. F.J.A. Den Broeder: Scripta Metall., 1969, vol. 3, pp. 321–25.

    Article  Google Scholar 

  18. S.K. Kailasam, J.C. Lacombe, and M.E. Glicksman: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2605–10.

    Article  Google Scholar 

  19. C. Wagner: Acta. Metall., 1969, vol. 17, pp. 99–107.

    Article  Google Scholar 

  20. M.A. Dayananda: Def. Diffus. Forum, 2010, vols. 297–301, pp. 1451–60.

    Article  Google Scholar 

  21. L.D. Hall: J. Chem. Phys., 1953, vol. 21, pp. 87–89.

    Article  Google Scholar 

  22. T.N. Prasanthi, C. Sudha, S. Ravikirana, S. Saroja, N. Naveen Kumar, G.D. JanakiRam: Mater. Des., 2015, vol. 88, pp. 58–68.

    Google Scholar 

  23. T.N. Prasanthi, C. Sudha, S. Ravikirana, and S. Saroja: Mater. Des., 2016, vol. 93, pp. 180–93.

    Google Scholar 

  24. V.D. Scott, G. Love, and S.J.B. Reed: Quantitative Electron Probe Microanalysis, 2nd ed., Ellis Horwood Ltd., New York, 1995, pp .119–120.

    Google Scholar 

  25. Z. Guo, N. Saunders, J.P. Schillè, and A.P. Miodownik: Mater. Sci. Eng. A, 2009, vol. 499, pp. 7–13.

    Article  Google Scholar 

  26. M. Ghosh, S. Chatterjee, and B. Mishra: Mater. Sci. Eng. A, 2003, vol. 363, pp. 268–74.

    Article  Google Scholar 

  27. A. Laik, G.B. Kale, and K. Bhanumurthy: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2919–26.

    Article  Google Scholar 

  28. S. Santra and A. Paul: Scripta Mater., 2015, vol. 103, pp. 18–21.

    Article  Google Scholar 

  29. http://www.webelements.com/periodicity/molar_volume/. Accessed 20 Jan 2017.

  30. H. Fujii, L. Cui, N. Tsuji, M. Maeda, K. Nakata, and K. Nogi: Mater. Sci. Eng. A, 2006, vol. 429, pp. 50–57.

  31. S. Kundu and S. Chatterjee: Mater. Sci. Eng. A, 2008, vol. 480, pp. 316–22.

    Article  Google Scholar 

  32. J.L. Murray: Phase Diagrams of Binary Ti Alloys, ASM International, Metals Park, OH, 1987, pp. 99–111.

    Google Scholar 

  33. H. Nakajima, S. Ohshida, K. Nonaka, Y. Yoshida, and F.E. Fujital: Scripta Mater., 1996, vol. 34, pp. 949–53.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. T. Jayakumar, former Director, MMG, and Dr. M. Vijayalakshmi, former Associate Director, PMG, for their encouragement and support throughout the period of this project. The authors also thank Dr. Shyamprasad and Mr. Vijay Khedekar, National Institute of Oceanography, Goa, for helping with the EPMA experiments, and UGC-DAE-CSR Kokkilamedu for the FESEM support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Saroja.

Additional information

Manuscript submitted January 26, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasanthi, T.N., Sudha, C. & Saroja, S. A Study of Interdiffusion in the Fe-C/Ti System Under Equilibrium and Nonequilibrium Conditions. Metall Mater Trans A 48, 1969–1980 (2017). https://doi.org/10.1007/s11661-017-3972-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-3972-6

Keywords

Navigation