Skip to main content
Log in

Temperature Dependence of Laves Phase Composition in Nb, W and Si-Alloyed High Chromium Ferritic Steels for SOFC Interconnect Applications

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The Laves phase strengthened ferritic steel Crofer 22 H has been proposed as construction material for interconnects in solid oxide fuel cells. The background of the present study relates to the further qualification of this steel, especially with respect to a possible optimization of amount and composition of the strengthening Laves phase precipitates. For this purpose the chemical composition of the Laves phase in a number of high purity model alloys as well as in Crofer 22 H equilibrated at temperatures between 700 and 1100 °C was measured by EDX/WDX and atom probe tomography (APT). The obtained chemical compositions were used for a qualitative estimation of the site occupancy for Fe, Cr, Nb, W and Si in the Laves phase unit cell. Additionally, the results from APT measurements indicate the important role of impurities such as e.g. titanium in the Laves phase formation. Finally, the experimental results were compared with Thermocalc calculations using the database TCFE 7. This revealed that within the temperature range 800-900 °C a qualitative description of phases is possible, however, substantial differences existed particularly for the steel Crofer 22 H at and below 700 °C and above 950 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. W.J. Quadakkers, L. Niewolak, and P.J. Ennis, Creep Resistant Ferritic Steel, Patent DE 10 2006 007 598 A1, Filing date 18. 2. 2006

  2. T. Horita, H. Kishimoto, K. Yamaji, Y. Xiong, N. Sakai, M.E. Brito, and H. Yokokawa, Evaluation of Laves-Phase Forming Fe–Cr Alloy for SOFC Interconnects in Reducing Atmosphere, J. Power Sources, 2008, 176(1), p 54-61

    Article  Google Scholar 

  3. M. Palcut, L. Mikkelsen, K. Neufeld, M. Chen, R. Knibbe, and P.V. Hendriksen, Corrosion Stability of Ferritic Stainless Steels for Solid Oxide Electrolyser Cell Interconnect, Corros. Sci., 2010, 52(10), p 3309-3320

    Article  Google Scholar 

  4. Y.-T. Chiu and C.-K. Lin, Effects of Nb and W Additions on High-Temperature Creep Properties of Ferritic Stainless Steels for Solid Oxide Fuel Cell Interconnect, J. Power Sources, 2012, 198, p 149-157

    Article  Google Scholar 

  5. J. Froitzheim, G.H. Meier, L. Niewolak, P.J. Ennis, H. Hattendorf, L. Singheiser, and W.J. Quadakkers, Development of High Strength Ferritic Steel for Interconnect Application in SOFCs, J. Power Sources, 2008, 178(1), p 163-173

    Article  Google Scholar 

  6. P. Kofstad and R. Bredesen, High Temperature Corrosion in SOFC Environments, Solid State Ionics, 1992, 52(1–3), p 69-75

    Article  Google Scholar 

  7. W.J. Quadakkers, J. Piron-Abellan, V. Shemet, and L. Singheiser, Metallic Interconnects for Solid Oxide Fuel Cells—A Review, Mater. High Temp., 2003, 20(2), p 115-127

    Google Scholar 

  8. J. Piron-Abellan, V. Shemet, F. Tietz, L. Singheiser, and W.J. Quadakkers, Ferritic Steel Interconnect for Reduced Temperature SOFC, Proceedings of the Electrochemical Society, 2001-2016, 2001, p 811-819

  9. L. Niewolak, E. Wessel, L. Singheiser, and W.J. Quadakkers, Potential Suitability of Ferritic and Austenitic Steels as Interconnect Materials for Solid Oxide Fuel Cells Operating at 600°C, J. Power Sources, 2010, 195(22), p 7600-7608

    Article  Google Scholar 

  10. L. Singheiser, P. Huczkowski, T. Markus, and W.J. Quadakkers, High Temperature Corrosion Issues for Metallic Materials in Solid Oxide Fuel Cells, Shreir’s Corr., 2010, 1, p 482-517

    Article  Google Scholar 

  11. L. Niewolak, D.J. Young, H. Hattendorf, L. Singheiser, and W.J. Quadakkers, Mechanisms of Oxide Scale Formation on Ferritic Interconnect Steel in Simulated Low and High PO2 Service Environments of Solid Oxide Fuel Cells, Oxid. Met., 2014, 82(1–2), p 123-143

    Article  Google Scholar 

  12. P. Huczkowski, N. Christiansen, V. Shemet, L. Niewolak, J. Piron-Abellan, L. Singheiser, and W.J. Quadakkers, Growth Mechanisms and Electrical Conductivity of Oxide Scales on Ferritic Steels Proposed as Interconnect Materials for SOFC’s, Fuel Cells, 2006, 2, p 93-99

    Article  Google Scholar 

  13. P. Huczkowski, N. Christiansen, V. Shemet, J. Piron-Abellan, L. Singheiser, and W.J. Quadakkers, Oxidation Limited Life Times of Chromia Forming Ferritic Steels, Mater. Corros., 2004, 55, p 825-830

    Article  Google Scholar 

  14. J.O. Andersson, T. Helander, L. Höglund, P.F. Shi, and B. Sundman, Thermo-Calc and DICTRA, Computational Tools for Materials Science, Calphad, 2002, 26, p 273-312

    Article  Google Scholar 

  15. Crofer 22 H Material Data Sheet No. 4050, June 2010 Edition at http://www1.vdm-metals.com/downloads/materialdatenblaetter/?no_cache=1 (accessed: 23-04-2015)

  16. L. Garcia-Fresnillo, V. Shemet, A. Chyrkin, L.G.J. de Haart, and W.J. Quadakkers, Long-Term Behaviour of Solid Oxide Fuel Cell Interconnect Materials in Contact with Ni-mesh During Exposure in Simulated Anode Gas at 700 and 800°C, J. Power Sources, 2014, 271, p 213-222

    Article  ADS  Google Scholar 

  17. K. Korniyenko, G. Effenberg, and S. Ilyenko, Chromium – Iron – Niobium, Ternary Alloy Systems, G. Effenberg and S. Ilyenko, Eds. 2008, p 1-11. Springer, Heidelberg. http://materials.springer.com/lb/docs/sm_lbs_978-3-540-74199-2_11; accessed: 23-04-2015

  18. M. Grujicic, S. Tangrila, O.B. Cavin, W.D. Porter, and C.R. Hubbard, Effect of Iron Additions on Structure of Laves Phases in Nb-Cr-Fe Alloys, Mater. Sci. Eng., 1993, Al60, p 37-48

    Article  Google Scholar 

  19. N.I. Kaloev, E.M. Sokolovskaya, A.Kh. Abram’yan, L.K. Kulova, and F.A. Agaeva, Studies of an Isothermal Section of the Fe-Cr-Nb System at 1273°C, Izvestiya Akademii Nauk SSSR Metally, 1987, 4, p 206-208

    Google Scholar 

  20. A. Jacob, C. Schmetterer, D. Grüner, E. Wessel, B. Hallstedt, and L. Singheiser, The Cr-Fe-Nb Ternary System: Experimental Isothermal Sections at 700°C, 1050°C and 1350°C, J. Alloys Compd., 2015, 648, p 168-177. doi:10.1016/j.jallcom.2015.06.137

    Article  Google Scholar 

  21. Thermo-Calc Software TCFE7 Steels/Fe-alloys database version 7 accessed: 15-04-2015

  22. T.F. Kelly and D.J. Larson, Atom Probe Tomography 2012, Annu. Rev. Mater. Res., 2012, 42(1), p 1-31

    Article  ADS  Google Scholar 

  23. F. Danoix and P. Auger, Atom Probe Studies of the Fe–Cr System and Stainless Steels Aged at Intermediate Temperature: A Review, Mater. Charact., 2000, 44(1–2), p 177-201

    Article  Google Scholar 

  24. M. Herbig, P. Choi, and D. Raabe, Combining Structural and Chemical Information at the Nanometer Scale by Correlative Transmission Electron Microscopy and Atom Probe Tomography, Ultramicroscopy, 2015, 153, p 32-39

    Article  Google Scholar 

  25. H. Sepehri-Amin, T. Ohkubo, T. Nishiuchi, S. Hirosawa, and K. Hono, Quantitative Laser Atom Probe Analyses of Hydrogenation-Disproportionated Nd-Fe-B Powders, Ultramicroscopy, 2011, 111, p 615-618

    Article  Google Scholar 

  26. W. Xiong, M. Selleby, Q. Chen, J. Odqvist, and Y. Du, Phase Equilibria and Thermodynamic Properties in the Fe-Cr System, Crit. Rev. Solid State Mater. Sci., 2010, 35, p 125-152

    Article  ADS  Google Scholar 

  27. V.P. Itkin, Cr-Fe System, Binary Alloy Phase Diagrams, 2nd ed., T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, Ed., ASM International, Materials Park, 1996,

    Google Scholar 

  28. E. Paul and L.J. Swartzendruber, The Fe-Nb (Iron-Niobium) System, Bull. Alloy Phase Diagr., 1986, 7(3), p 248-254

    Article  Google Scholar 

  29. J.M.Z. Bejarano, S. Gama, C.A. Ribeiro, and G. Effenberg, The Iron - Niobium Phase Diagram, Z. Metallkd., 1993, 84(3), p 160-164

    Google Scholar 

  30. H. Okamoto, Fe-Nb (Iron-Niobium), J. Phase Equilib., 1993, 14(5), p 650-652

    Article  Google Scholar 

  31. H. Okamoto, Comment on Fe-Nb (iron-niobium), J. Phase Equilib., 1995, 16(4), p 369-370

    Article  Google Scholar 

  32. S. Voß, M. Palm, F. Stein, and D. Raabe, Phase Equilibria in the Fe-Nb System, J. Phase Equilib. Diffus., 2011, 32(2), p 97-104

    Article  Google Scholar 

  33. D. Grüner, Untersuchungen zur Natur der Laves-Phasen in Systemen der Übergangsmetalle, PhD Thesis, TU Dresden, D, 2007, in German

  34. A.W. Smith and R.D. Rawlings, A Mossbauer Effect Study of the Laves Phase NbFe2, Phys. Status Solidi (a), 1974, 22, p 491-499

    Article  ADS  Google Scholar 

  35. D.J. Thoma and J.H. Perepezko, An Experimental Evaluation of the Phase Relationships and Solubilities in the Nb-Cr System, Mater. Sci. Eng. A, 1992, 156, p 97-108

    Article  Google Scholar 

  36. C. Schmetterer, A. Khvan, A. Jacob, B. Hallstedt, and T. Markus, A New Theoretical Study of the Cr-Nb System, J. Phase Equilib. Diffus., 2014, 35(4), p 434-444

    Article  Google Scholar 

  37. J. Pavlů, J. Vřeštál, and M. Šob, Re-modeling of Laves Phases in the Cr-Nb and Cr-Ta Systems Using First-Principles Results, CALPHAD, 2009, 33, p 179-186

    Article  Google Scholar 

  38. F. Stein, M. Palm, and G. Sauthoff, Structure and Stability of Laves Phases Part II-Structure Type Variations in Binary and Ternary Systems, Intermetallics, 2005, 13, p 1056-1074

    Article  Google Scholar 

  39. D. Wang, S. Yang, M. Yang, J. Zheng, H. Huc, X. Liu, and C. Wanga, Experimental Investigation of Phase Equilibria in the Fe–Nb–Si Ternary System, J. Alloy Compd., 2014, 605, p 183-192

    Article  Google Scholar 

  40. P. Franke and H.J. Seifert, Ternary System Cr-Fe-W, Ternary Steel Systems: Phase Diagrams and Phase Transition Data, P. Franke H. J. Seifert, Eds., Springer, Heidelberg, 2012, http://materials.springer.com/lb/docs/sm_lbs_978-3-540-88142-1_91; accessed: 23-04-2015

  41. P. Gustafson, An Experimental Study and a Thermodynamic Evaluation of the Cr-Fe-W System, Metall. Trans. A, 1988, 19A, p 2531-2546

    Article  ADS  Google Scholar 

  42. J. Pavlů and M. Šob, Ab Initio Study of C14 Laves Phases in Fe-Based Systems, J. Min. Metall. B, 2012, 48, p 395-401

    Article  Google Scholar 

  43. A. Antoni-Zdziobek, T. Commeau, and J.-M. Joubert, Partial Redetermination of the Fe-W Phase Diagram, Metall. Mater. Trans. A, 2013, 44A, p 2996-3003

    Article  ADS  Google Scholar 

  44. N. Fujita, M. Kikuchi, and K. Ohmura, Expressions for Solubility Products of Fe3Nb3C Carbide and Fe2Nb Laves Phase in Niobium Alloyed Ferritic Stainless Steels, ISIJ Int., 2003, 43(12), p 1999-2006

    Article  Google Scholar 

  45. N. Nabiran, S. Klein, S. Weber, and W. Theisen, Evolution of the Laves Phase in Ferritic Heat-Resistant Steels During Long-Term Annealing and Its Influence on the High-Temperature Strength, Metall. Mater. Trans. A, 2015, 46(1), p 102-114

    Article  Google Scholar 

  46. J.A. Wert, E.R. Parker, and V.F. Zackay, Elimination of Precipitate Free Zones in an Fe-Nb Creep-Resistant Alloy, Metall. Trans. A, 1979, 10(9), p 1313-1322

    Article  Google Scholar 

  47. B. Kuhn, C. Asensio-Jimenez, L. Niewolak, T. Hüttel, T. Beck, H. Hattendorf, L. Singheiser, and W.J. Quadakkers, Effect of Laves Phase Strengthening on the Mechanical Properties of High Cr Ferritic Steels for Solid Oxide Fuel Cell Interconnect Application, Mater. Sci. Eng. A, 2011, 528(18), p 5888-5899

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Mr. Cosler Mrs. Kick and Mr. Mahnke for their assistance in carrying out the heat treatment experiments, as well as Dr. Wessel who is kindly acknowledged for SEM analyses, Mr. Gutzeit and Mr. Bartsch for cross-section preparation and optical metallography. Part of the investigations was carried out in the frame of the ZEUS III project funded by the German Ministry of Economics (BMWi) under Contract nr. FKZ0327766A-D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Niewolak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niewolak, L., Savenko, A., Grüner, D. et al. Temperature Dependence of Laves Phase Composition in Nb, W and Si-Alloyed High Chromium Ferritic Steels for SOFC Interconnect Applications. J. Phase Equilib. Diffus. 36, 471–484 (2015). https://doi.org/10.1007/s11669-015-0403-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-015-0403-5

Keywords

Navigation