Skip to main content
Log in

Failure Analysis of Compressor Blades of Aero-Engine

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

The compressor is an integral and an important part of an aero-engine. The blades of compressor fail because of several reasons. Failed blades of various aero-engines are subjected to investigations in this work. Results of these investigations are presented in detail. Compressor blade denoted as CB-1 failed because of formation of alpha casing and impact on the casing. Another compressor blade termed as CB-2 was damaged because of impact by foreign object. Sticking of the blade to the casing resulting in tearing of the blade is responsible for failing of third compressor blade referred as CB-3. Thermo-mechanical fatigue caused cracking on a different compressor blade designated as CB-4. Impact by foreign object containing Ca, Al, Zn and O is the reason for the damage of the leading and trailing edges of fifth compressor blade assigned as CB-5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. V. Infante, J.M. Silva, M. de Freitas, L. Reis, Failures analysis of compressor blades of aeroengines due to service. Eng. Fail. Anal. 16, 1118–1125 (2009)

    Article  CAS  Google Scholar 

  2. K.S. Song, S.G. Kim, Y.H. Hwang, Failure of the J79 engine compressor blade due to stall. J. Fail. Anal. Prev. 7, 212–217 (2007)

    Article  Google Scholar 

  3. K. Mishra, K. Johney Thomas, S.S.I. Ahmed, Fatigue Failure of LP Compressor Blade in an Aero Gas. J. Fail. Anal. Prev. 14, 296–302 (2014)

    Article  Google Scholar 

  4. R.K. Mishra, V. Nandi, R. Raghavendra Bhat, Failure analysis of high-pressure compressor blade in, an aero gas turbine engine. J. Fail. Anal. Prev. 18, 465–470 (2018)

    Article  Google Scholar 

  5. E. Poursaeidi, A. Babaei, F. Behrouzshad, M.R. Mohammadi Arhani, Failure analysis of an axial compressor first row rotating blades. Eng. Fail. Anal. 28, 25–33 (2013)

    Article  CAS  Google Scholar 

  6. L. Witek, Experimental crack propagation and failure analysis of the first stage compressor blade subjected to vibration. Eng. Fail. Anal. 16, 2163–2217 (2009)

    Article  CAS  Google Scholar 

  7. M. Swamy, A.H.V. Kulvir Singh, M.C. Pavan Antony Harison, G. Jayaraman, Failure investigation of frame 6FA gas turbine compressor blades. Trans. Ind. Inst. Met. 69, 647–651 (2016)

    Article  Google Scholar 

  8. M. Roy, Failure analysis of bearings of aero engine. J. Fail. Anal. Prev. 19, 1615–1629 (2019)

    Article  Google Scholar 

  9. S. Madhav, M. Roy, Failure analysis of turbine stator vanes of aero-engine. Eng. Fail. Anal. 117, 104783 (2020)

    Article  Google Scholar 

  10. S. Sung, Y. Kim, Alpha-case formation mechanism on titanium investment castings. Mater. Sci. Eng. A. 405, 173 (2005)

    Article  Google Scholar 

  11. C. Tomastic, M. Lackner, A. Pauschitz, M. Roy, Structural, chemical and nanomechanical investigations of SiC/polymeric a-C: H films deposited by reactive RF unbalanced magnetron sputtering. Solid State Sci. 53, 1–8 (2016)

    Article  Google Scholar 

  12. P. Cosemans, X. Zhu, J.P. Celis, M.V. Stappen, Development of low friction wear-resistant coatings. Surf. Coat. Technol. 174–175, 416–420 (2003)

    Article  Google Scholar 

  13. M. Roy, S. Kvasnica, C. Eisenmenger-Stittner, G. Vorlaufer, A. Pauschitz, An analysis of nano tribological study of Ti-containing hard carbon film. Surf. Eng. 21(3), 257–264 (2005)

    Article  CAS  Google Scholar 

  14. T. Sampath Kumar, S. Balasivanandha Prabu, S. Madhavan, K.A. Padmanabhan, Thermal stability of cathodic arc vapour deposited TiAlN/AlCrN and AlCrN/TiAlN coatings on tungsten carbide tool. Trans. Ind. Inst. Met. 71, 665–676 (2018)

    Article  CAS  Google Scholar 

  15. A.K. Krella, Cavitation erosion of monolayer PVD coatings – An influence of deposition technique on the degradation process. Wear. 478–479, 203762 (2021)

    Article  Google Scholar 

  16. M. Roy, S. Saha, K. Valleti, Microstructure and wear of cathodic arc physical vapor deposited TiAlN, TiCrN and n-TiAlN/α-Si3N4 films. Def. Sci. J. 70(6), 656–663 (2020)

    Article  CAS  Google Scholar 

  17. H.A. Jehn, Multicomponent and multiphase hard coatings for tribological applications. Surf. Coat. Technol. 131, 433–440 (2000)

    Article  CAS  Google Scholar 

  18. M. Palaniappa, M. Roy, Plating and Tribology, Surface Engineering for Enhanced Performance against Wear. (Springer Verlag, Austria, 2013)

    Google Scholar 

  19. S.N. Patankar, Y.T. Kwang, T.M. Jen, Alpha casing and super plastic behavior of Ti-6-4. J. Mater. Proces. Technol. 112, 24–28 (2001)

    Article  CAS  Google Scholar 

  20. M. Roy, K.K. Ray, G. Sundararajan, An analysis of the transition from metal erosion to oxide erosion. Wear. 217, 312–320 (1998)

    Article  CAS  Google Scholar 

  21. S. Sarkar, E. Badisch, R. Mitra, M. Roy, Impact abrasive wear response of carbon/carbon composites at elevated temperatures. Tribology Letter. 37, 445–451 (2010)

    Article  CAS  Google Scholar 

  22. M. Roy, D. Subba Rao, S. Rao, G. Sundararajan, Abrasive wear behaviour of detonation sprayed WC-Co coatings on mild steel. Surf. Eng. 15, 129–136 (1999)

    Article  CAS  Google Scholar 

  23. M. Roy, Y. Tirupataiah, G. Sundararajan, Effect of particle shape on the erosion of Cu and its alloys. Mater. Sci. Eng., A. 165, 51–63 (1993)

    Article  Google Scholar 

  24. A. Kermanpur, H. Sepehri Amin, S. Ziaei-Rad, N. Nourbakhshnia, M. Mosaddeghfar, Failure analysis of Ti6Al4V gas turbine compressor blades. Eng. Fail. Anal. 15, 1052–1064 (2008)

    Article  CAS  Google Scholar 

  25. W. Feifei, C. Yunyong, W. Zhiqing, C. Lulu, M. Jin, Failure analysis of rubbing of the fan tip and case of an engine. Proc. Eng. 99, 1289–1296 (2015)

    Article  Google Scholar 

  26. D. Lao, W. Jia, S. Li, D. Heiand, R. Chen, Effect of residual compressive stress on thermal shock resistance and microstructure of Al2O3–ZrO2 reticulated porous ceramics. Mater. Res. Express. 6(10), 105209 (2019)

    Article  CAS  Google Scholar 

  27. D. Senthilkumar, I. Rajendrana, M. Pellizzari, J. Siiriainen, Influence of shallow and deep cryogenic treatment on the residual state of stress of 4140 steel. J. Mater. Process. Technol. 211, 396–401 (2011)

    Article  CAS  Google Scholar 

  28. I. Gunes, A. Cicek, K. Aslantas, F. Kara, Effect of deep cryogenic treatment on wear resistance of AISI 52100 bearing steel. Trans. Ind. Inst. Met. 67, 909–917 (2014)

    Article  CAS  Google Scholar 

  29. N. Krishnaraj, M. Roy, Tribology of Diffusion Treated Surfaces, Surface Engineering for Enhanced Performance against Wear. (Springer Verlag, Austria, 2013)

    Google Scholar 

  30. E. Silveira, G. Atxaga, A.M. Irisarri, Failure analysis of a set of compressor blades. Eng. Fail. Anal. 15, 666–674 (2008)

    Article  CAS  Google Scholar 

  31. R. Sharma, P. Manda, S. Singh, A.K. Singh, Failure analysis of variable inlet guide vane and compressor rotor blade of helicopter engine. Mater. Today Proc. 5, 5124–5130 (2018)

    Article  CAS  Google Scholar 

  32. P. Mukhopadhyay, M. Srinivas, M. Roy, Microstructural development during erosion of tribological steel. Mater. Charact. 113, 43–51 (2016)

    Article  CAS  Google Scholar 

  33. M. Roy, Dynamic hardness of detonation sprayed WC-Co coating. J. Therm. Spray Technol. 11, 393–399 (2002)

    Article  CAS  Google Scholar 

  34. M. Roy, Y. Tirupataiah, G. Sundararajan, The influence of solid solution and dispersion strengthening mechanisms on the room temperature erosion behaviour of Nickel. Mater. Sci. Technol. 11, 791–797 (1995)

    Article  CAS  Google Scholar 

  35. M. Roy, Approaches to enhance elevated temperature erosion resistance of Ni-base super alloys. Mater. High Temp. 36(2), 142–156 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Authors are grateful to the Director, DMRL for giving permission to publish the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Madhav.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhav, S., Roy, M. Failure Analysis of Compressor Blades of Aero-Engine. J Fail. Anal. and Preven. 22, 968–982 (2022). https://doi.org/10.1007/s11668-022-01405-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-022-01405-w

Keywords

Navigation