Skip to main content

Advertisement

Log in

Thermal Stability of Cathodic Arc Vapour Deposited TiAlN/AlCrN and AlCrN/TiAlN Coatings on Tungsten Carbide Tool

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

TiAlN/AlCrN and AlCrN/TiAlN bilayer coatings were deposited on tungsten carbide cutting inserts using the plasma enhanced physical vapour deposition process. Their thermal stability was varied by annealing the specimens at different temperatures and time durations. The thermal stability was evaluated from hardness measurement, oxygen absorption and X-ray diffraction (XRD) patterns. TiAlN/AlCrN coating initially shows an increase in hardness, but it decreases when the annealing temperature is increased. A high hardness of 46 GPa is measured in the TiAlN/AlCrN coating annealed at 600 °C for 08 h. But, AlCrN/TiAlN coating displays a decrease in hardness after annealing at 600 °C, and the hardness increases to 47 GPa on increasing the annealing temperature further (1000 °C for 6 h). From weight measurements, it is clear that the TiAlN/AlCrN bilayer coating results in weight reduction initially, but it increases with a further increase in the annealing temperature. In contrast, in the AlCrN/TiAlN coating, the weight increases monotonically, but gradually, with increasing temperature of annealing. The XRD results are discussed with reference to the different oxide phases formed in the two bilayer coatings during annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Dosbaeva G K, Veldhuis S C, Yamamoto K, Wilkinson D S, Beake B D, Jenkins N, Elfizy A, and Fox-Rabinovich GS, Int J Refract Metals Hard Mater 28 (2010) 133.

  2. Yin-Yu C, Da-Yung W, and Chi-Yung H, Surf Coat Technol 200 (2005) 1702.

  3. Cordes S E, CIRP J Manuf Sci Technol 05 (2012) 20.

    Article  Google Scholar 

  4. Willmann H, Mayrhofer P H, Persson P O A, Reiter A E, Hultman L, and Mitterer C, Scr Mater 54 (2006) 1847.

    Article  Google Scholar 

  5. Yin-Yu C, Shun-Jan Y, and Da-Yung W, J Thin Solid Films 515 (2007) 4722.

    Article  Google Scholar 

  6. Paldey S, and Deevi S C, Mater Sci Eng A342 (2003) 58.

    Article  Google Scholar 

  7. Dobrzanski L A, and Mikula J J, Mater Process Technol 164 (2005) 822.

    Article  Google Scholar 

  8. Veprek S, Mukherjee S, Mannling H D, and Jianli H, Mater Sci Eng A340 (2003) 292.

    Article  Google Scholar 

  9. Veprek S, Mukherjee S, Karvankova P, Mannling H D, He J L, Moto K, Proachazka J, and Argon A S, Thin Solid Films 436 (2003) 220.

    Article  Google Scholar 

  10. Grzesik W, Zalisz Z, Krol S, and Nieslony P, Wear 261 (2006) 1191.

    Article  Google Scholar 

  11. Endrino J L, and Fox-Rabinovich G C, Surf Coat Technol 200 (2006) 6840.

    Article  Google Scholar 

  12. Parreira N M G, and Polcar, C A, Surf Coat Technol 201 (2007) 7076.

    Article  Google Scholar 

  13. Tlili B, Noureav C, Walock M J, Nasri M, and Ghrib T, Vacuum 86 (2012) 1048.

    Article  Google Scholar 

  14. Willmann H, Mayrhofer P H, Hultman L, and Mitterer C, Int Heat Treat Surf. Eng 1 (2007) 75.

    Article  Google Scholar 

  15. Raveh A, Zukerman I, Shneck R, Avni R, and Fried I, Surf Coat Technol 201 (2007) 6136.

    Article  Google Scholar 

  16. McConnell M L, Dowling D P, Donnelly N, Donnelly K, and Flood R V, Surf Coat Technol 116 (1999) 1133.

  17. Chim Y C, Ding X Z, Zeng T, and Zhang S, Thin Solid Films 517 (2009) 4845.

    Article  Google Scholar 

  18. Mayrhofer P M, Willmann H, and Mitterer C, Thin Solid Films 440 (2003) 174.

    Article  Google Scholar 

  19. Mitterer C, Mayrhofer P H, Musil J, Vacuum 71 (2003) 279.

    Article  Google Scholar 

  20. Mayrhofer P H, and Stoiber M, Surf Coat Technol 08 (2006) 132.

  21. Bhagchandani R K, Bangari R S, Mehra D, Shukla V N, and Tewari V K, Int J Adv Sci Res Technol 3 (2012) 205.

    Google Scholar 

  22. Mayrhofer P H, Tischler G, and Mitterer C, Surf Coat Technol 142 (2001) 78.

    Article  Google Scholar 

  23. Dejun L I, Sci China Ser E: Technol Sci 49 (2006) 576.

    Article  Google Scholar 

  24. Lugscheider E, Knotek O, Barimani C, and Zimmermann H, Surf Coat Technol 94 (1997) 641.

    Article  Google Scholar 

  25. Barshilia H C, Prakash M S, Jain A, and Rajam K S, Vacuum 77 (2005) 169.

    Article  Google Scholar 

  26. Jankowshi A F, Go J, and Hayees J P, Surf Coat Technol 202 (2007) 957.

    Article  Google Scholar 

  27. Ma S, Prochazka J, Karvankova P, Ma Q, Wang X, Ma D, Xu K, and Veprek S, Surf Coat Technol 194 (2005) 143.

  28. Bai X, Zheng W, Xiong F, and Jiang Q, Appl Surf Sci 253 (2007) 7238.

    Article  Google Scholar 

  29. Veprek S, Veprek-Heijman M G J, Karvankova P, and Prochazka J, Thin Solid Films 476 (2005) 01.

    Article  Google Scholar 

  30. Edlmayr V, Moser M, Walter C, and Mitterer C, Surf Coat Technol 204 (2010) 1576.

  31. Barshilia H C, Deepthi B, Rajam K S, Bhatti K P, and Chaudhary S, J Vac Sci Technol A Vac Surf Films 27 (2009) 29.

  32. Korotaev A D, Borisov D P, and Moshkov, Y, Russian Phys J 50 (2007) 969.

    Article  Google Scholar 

  33. Abid A, Bensalem R, Sealy B J, J Mater Sci 2 (1986) 1301.

  34. Sampath Kumar T, Balasivanandha Prabu S, Manivasagam G, and Padmanabhan K A, Int J Min Metall Mater 21 (2014) 796.

  35. Sampath kumar T, Balasivanandha Prabu S, and Manivasagam G, J Mater Eng Perform 23 (2014) 2877.

  36. Faga M G, Gautier G, Calzavarini R, Perucca M, Aimo Boot E, Cartasegna F, and Settineri L, Wear 263 (2007) 1306.

    Article  Google Scholar 

  37. Fox-Rabinovich G S, Yamamoto K, Aguirre M H, Cahill D G, Veldhuis S C, Biksa A, Dosbaeva G, and Shuster L S, Surf Coat Technol 204 (2010) 2465.

    Article  Google Scholar 

  38. Hernández L C, Ponce L, Fundora A, López E, and Pérez E, Materials 4 (2011) 929.

  39. Novak M, Lofaj F, and Hviscova P, Powder Metall Prog 13 (2013) 03.

  40. Ivashchenko L A, Russakov G V, Powder Metall Metals Ceram 43 (2004) 11.

    Google Scholar 

  41. Veprek S, and Argon A S, J Vac Sci Technol 21 (2003) 532.

    Article  Google Scholar 

  42. Prengel H, Jindal P C, Wendt K H, Santhanam A T, Hegde P L, and Penich R M, Surf Coat Technol 139 (2001) 25.

    Article  Google Scholar 

  43. Bouzakis K D, Pappa M, Skordaris G, Bouzakis E, and Gerardis S, Surf Coat Technol 205 (2010) 1481.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Sampath Kumar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sampath Kumar, T., Balasivanandha Prabu, S., Madhavan, S. et al. Thermal Stability of Cathodic Arc Vapour Deposited TiAlN/AlCrN and AlCrN/TiAlN Coatings on Tungsten Carbide Tool. Trans Indian Inst Met 71, 665–676 (2018). https://doi.org/10.1007/s12666-017-1199-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-017-1199-2

Keywords

Navigation