Skip to main content

Advertisement

Log in

Failure Analysis of Medical Devices

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

Bearing in mind the three-legged stool approach of device design/manufacturing, patient factors, and surgical technique, this article aims to inform the failure analyst of the metallurgical and materials engineering aspects of a medical device failure investigation. It focuses on the device "failures" that include fracture, wear, and corrosion. The article first discusses failure modes of long-term orthopedic and cardiovascular implants. The article then focuses on short-term implants, typically bone screws and plates. Lastly, failure modes of surgical tools are discussed. The conclusion of this article presents several case studies illustrating the various failure modes discussed throughout.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

source for monoatomic hydrogen that resulted in embrittlement

Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

Similar content being viewed by others

References

  1. Medical Device Overview U.S. Food and Drug Administration, https://www.fda.gov/industry/regulated-products/medical-%20device-overview#What%20is%20a%20medical%20device, accessed June 12, 2020, 2020

  2. Classification of Products as Drugs and Devices and Additional Product Classification Issues: Guidance for Industry and FDA Staff. Office of Combination Products, U.S. Food and Drug Administration, 2017

  3. U.S. Federal Food, Drug, and Cosmetic Act, Section 201(h)

  4. S.-D. Revealed, Br. Dent. J. 200, 423–425 (2006). https://doi.org/10.1038/sj.bdj.4813555

    Article  Google Scholar 

  5. E. Whitmore, Development of FDA-Regulated Medical Products: Prescription Drugs, Biologics, and Medical Devices (ASQ Quality Press, Milwaukee, WI, 2003), p. 63

    Google Scholar 

  6. Overview of Device Regulation U.S. Food and Drug Administration, https://www.fda.gov/medical-devices/device-advice-comprehensive-regulatory-assistance/overview-device-regulation, accessed June 12, 2020 (2020)

  7. S.M. Kurtz, K.L. Ong, E. Lau, K.J. Bozic, Impact of the economic downturn on total joint replacement demand in the United States: updated projections to 2021. J. Bone Joint Surg. Am. 96, 624–630 (2014)

    Article  Google Scholar 

  8. M. Cheng, Medical Device Regulations: Global Overview and Guiding Principles (World Health Organization, Geneva, 2003), p. 3

    Google Scholar 

  9. L.D. Zardiackas, L.D. Dillon, Failure analysis of metallic orthopedic devices, in Encyclopedic Handbook of Biomaterials and Bioengineering, Part B: Applications, vol 1, ed. by D.L. Wise, D.J. Trantolo, D.E. Altobelli, M.J. Yaszernski, J.D. Gresser, E.R. Schwartz (CRC Press, Boca Raton, 1995), p. 123–170

    Google Scholar 

  10. O.E.M. Pohler, Failures of metallic orthopedic implants, Failure Analysis and Prevention, Vol 11. In: Metals Handbook, 9th ed., American Society for Metals, 1986, pp. 670–694

  11. B.M. Wroblewski, Fractured stem in total hip replacement: a clinical review of 120 cases. Acta Orth. Scand. 53, 279–284 (1982). https://doi.org/10.3109/17453678208992216

    Article  CAS  Google Scholar 

  12. C.A. Busch, M.N. Charles, C.M. Haydon, R.B. Bourne, C.H. Rorabeck, S.J. MacDonald, R.W. McCalden, Fractures of distally-fixed femoral stems after revision arthroplasty. J Bone Joint Surg Br. 87, 1333–1336 (2005). https://doi.org/10.1302/0301-620X.87B10.16528

    Article  CAS  Google Scholar 

  13. D.K. Collis, Femoral stem failure in total hip replacement. J. Bone Joint Surg. Am. 59, 1033–1041 (1977). https://doi.org/10.2106/00004623-197759080-00006

    Article  CAS  Google Scholar 

  14. K.M. Sarraf, R. Wharton, H.B. Abdul-Jabar, G. Shah, G.C. Singer, Fatigue fractures of total knee prostheses—a cause of knee pain. Bull. Hosp. Jt. Dis. 72(3), 242–246 (2014)

    Google Scholar 

  15. H.D. Clarke, R.T. Trousdale, Component Fracture in Total Knee Arthroplasty. Knee. 6(4), 261–267 (1999). https://doi.org/10.1016/S0968-0160(99)00025-3

    Article  Google Scholar 

  16. A. Soroceanu et al., Impact of obesity on complications, infection, and patient-reported outcomes in adult spinal deformity surgery. J. Neurosurg. Spine. 23(5), 656–664 (2015). https://doi.org/10.3171/2015.3.SPINE14743

    Article  Google Scholar 

  17. J.J. Callaghan, P.M. Pellicci, E.A. Salvati, K.L. Garvin, P.D. Wilson Jr., Fracture of the femoral component: analysis of failure and long-term follow-up of revision. Ortho. Clinics North Am. 19, 637–647 (1988)

    Article  CAS  Google Scholar 

  18. Å.S. Carlsson, C.F. Gentz, J. Stenport, Fracture of the femoral prosthesis in total hip replacement according to Charnley. Acta Ortho. Scand. 48, 650–655 (1977). https://doi.org/10.3109/17453677708994812

    Article  CAS  Google Scholar 

  19. J.C. McNeur, Fracture of the femoral prosthesis after total hip replacement. Med. J. Aust. 141, 341–344 (1984). https://doi.org/10.5694/j.1326-5377.1984.tb132801.x

    Article  CAS  Google Scholar 

  20. U.E. Pazzaglia, F. Ghisellini, D. Barbieri, L. Ceciliani, Failure of the stem in total hip replacement: a study of aetiology and mechanism of failure in 13 cases. Arch. Ortho. Trauma Surg. 107(4), 195–202 (1988). https://doi.org/10.1007/BF00449667

    Article  CAS  Google Scholar 

  21. R.D. Crowninshield, W.J. Maloney, D.H. Wentz, D.L. Levine, The role of proximal femoral support in stress development within hip prostheses. Clin. Ortho. Related Res. 420, 176–180 (2004). https://doi.org/10.1097/00003086-200403000-00024

    Article  Google Scholar 

  22. T. Rae, The toxicity of metals used in orthopaedic prostheses: an experimental studusing cultured human synovial fibroblasts. J. Bone Joint Surg. Br. 63, 435–440 (1981). https://doi.org/10.1302/0301-620X.63B3.7263760

    Article  Google Scholar 

  23. J.J. Jacobs, J.L. Gilbert, R.M. Urban, Corrosion of metal orthopaedic implants. J. Bone Joint Surg. Am. 80, 268–282 (1998). https://doi.org/10.2106/00004623-199802000-00015

    Article  CAS  Google Scholar 

  24. C.M. Arnholt, D.W. MacDonald, A.L. Malkani, G.R. Klein, C.M. Rimnac, S.M. Kurtz, S.B. Kocagoz, J.L. Gilbert, Implant Research Center Writing Committee, Corrosion damage and wear mechanisms in long-term retrieved cocr femoral components for total knee arthroplasty. The Journal of arthroplasty. 31(12), 2900–2906 (2016)

    Article  Google Scholar 

  25. Biological Responses to Metal Implants. U.S. Food and Drug Administration, 2019, pp. 1–143

  26. J.R. Goldberg, J.L. Gilbert, J.J. Jacobs, T.W. Bauer, W. Paprosky, S. Leurgans, A multicenter retrieval study of the taper interfaces of modular hip prostheses. Clin. Ortho. Related Res. 401, 149–161 (2002). https://doi.org/10.1097/00003086-200208000-00018

    Article  Google Scholar 

  27. C.M. Arnholt, D.W. MacDonald, M. Tohfafarosh, J.L. Gilbert, C.M. Rimnac, S.M. Kurtz, G. Klein, M.A. Mont, J. Parvizi, H.E. Cates, G.C. Lee, Mechanically assisted taper corrosion in modular TKA. The Journal of arthroplasty. 29(9), 205–208 (2014)

    Article  Google Scholar 

  28. W.T. Becker, R.J. Shipley, Failure Analysis and Prevention, Vol 11, Metals Handbook, 9th ed., American Society for Metals, 1986, p 148

  29. J.D. Bobyn, M. Tanzer, J.J. Krygier, A.R. Dujovne, C.E. Brooks, Concerns with modularity in total hip arthroplasty. Clin. Ortho. Related Res. 298, 27–36 (1994). https://doi.org/10.1097/00003086-199401000-00006

    Article  Google Scholar 

  30. J.R. Goldberg, J.J. Jacobs, J.L. Gilbert, In-Vitro Fretting Corrosion Testing of Modular Hip Implants, Fifth World Biomaterials Congress (Toronto), 1996, p 865

  31. D.W. Hoeppner, V. Chandrasekaran, Characterizing the Fretting Fatigue Behavior of Ti-6Al-4V in Modular Joints, Medical Applications of Titanium and Its Alloys: The Material and Biological Issues, STP 1272, American Society for Testing and Materials, 1996, pp. 252–265 doi:https://doi.org/10.1520/STP16084S

  32. J. Moseley, S. Nambu, R. Obert, M. Roark, D. Linton, S. Bible, Accelerated fretting corrosion testing of modular necks for THA. Presented at the Orthopedic Research Society Annual Meeting, Jan 29, 2013 (San Antonio, TX), http://www.ors.org/Transactions/59/PS2--101/1760.html

  33. M. Mroczkowski, J. Hertzler, S. Humphrey, T. Johnson, C. Blanchard, Effect of impact assembly on the fretting corrosion of modular hip tapers. J. Ortho. Res. 24(2), 271–279 (2006). https://doi.org/10.1002/jor.20048

    Article  Google Scholar 

  34. F. Aljenaei, I. Catelas, H. Louati, P. Beaule, M. Nganbe, Effects of hip implant modular neck material and assembly method on fatigue life and distraction force. J. Ortho. Res. 2017, 2023–2030 (2017)

    Article  Google Scholar 

  35. T.M. Grupp, T. Weik, W. Bloemer, H.P. Knaebel, Modular titanium alloy neck adapter failures in hip replacement—failure mode analysis and influence of implant material. BMC Musculoskel. Disord. 11(3), 1–12 (2010). https://doi.org/10.1186/1471-2474-11-3

    Article  CAS  Google Scholar 

  36. A. Krull, M.M. Morlock, N.E. Bishop, The influence of contamination and cleaning on the strength of modular head taper fixation in total hip arthroplasty. J. Arthropl. 32, 3200–3205 (2017). https://doi.org/10.1016/j.arth.2017.05.009

    Article  Google Scholar 

  37. C.J. Lavernia, L. Baerga, R.L. Barrack, E. Tozakoglou, S.D. Cook, L. Lata, M.D. Rossi, The effects of blood and fat on morse taper disassembly forces. Am. J. Ortho. 38, 187–190 (2009)

    Google Scholar 

  38. S. Nambu, R. Obert, M. Roark, D. Linton, S. Bible, J. Moseley, Accelerated fretting corrosion testing of modular necks for THA. Ortho. Proc. 95(SUPP_34), 449–449 (2013)

    Google Scholar 

  39. M. Heron, Deaths: leading causes for 2017. Natl. Vital Stat. Rep. 68, 1–77 (2019)

    Google Scholar 

  40. E.A. Hooker, D.J. O’Brien, D.F. Danzl, J.A.C. Barefoot, L.E. Brown, Respiratory rates in emergency department patients. J. Emerg. Med. 7, 129–132 (1989). https://doi.org/10.1016/0736-4679(89)90257-6

    Article  CAS  Google Scholar 

  41. S. Adlakha, Stent fracture in the coronary and peripheral arteries. J. Intervent. Cardiol. 23, 411–419 (2010)

    Article  Google Scholar 

  42. J.G. Harold, T.A. Bass, T.M. Bashore, R.G. Brindis, J.E. Brush, J.A. Burke, G.J. Dehmer, Y.A. Deychak, H. Jneid, J.G. Jollis, J.S. Landzberg, ACCF/AHA/SCAI 2013 update of the clinical competence statement on coronary artery interventional procedures: a report of the american college of cardiology foundation/american heart association/american college of physicians task force on clinical competence and training. J. Am. Coll. Cardiol. 62, 357–396 (2013). https://doi.org/10.1161/CIR.0b013e318299cd8a

    Article  Google Scholar 

  43. C. Tan, R.A. Schatz, The history of coronary stenting. Interven. Cardiol. Clin. 5, 271–280 (2016). https://doi.org/10.1016/j.iccl.2016.03.001

    Article  Google Scholar 

  44. D.C. Nabseth, J.M. Moran, Reassessment of the role of inferior-vena-cava ligation in venous thromboembolism. New Engl. J. Med. 273, 1250–1253 (1965). https://doi.org/10.1056/NEJM196512022732305

    Article  CAS  Google Scholar 

  45. C. Crane, The Mobin-Uddin inferior vena caval filter. Arch. Surg. 103, 661 (1971). https://doi.org/10.1001/archsurg.1971.01350120021001

    Article  CAS  Google Scholar 

  46. K. Mobin-Uddin, R. McLean, H. Bolooki, J.R. Jude, Caval interruption for prevention of pulmonary embolism: long-term results of a new method. Arch. Surg. 99, 711–715 (1969). https://doi.org/10.1001/archsurg.1969.01340180035006

    Article  CAS  Google Scholar 

  47. J. Ross Jr., E. Braunwald, Aortic stenosis. Circulation. 38, 61–67 (1968). https://doi.org/10.1161/01.CIR.38.1S5.V-61

    Article  Google Scholar 

  48. A.M. Matthews, The development of the Starr-Edwards heart valve. Texas Heart Inst. J. 25, 282–293 (1998)

    CAS  Google Scholar 

  49. P. Pibarot, J.G. Dumesnil, Prosthetic heart valves selection of the optimal prosthesis and long-term management. Circulation. 119, 1034–1048 (2009). https://doi.org/10.1161/CIRCULATIONAHA.108.778886

    Article  Google Scholar 

  50. M. Matchett, S.F. Sears, G. Hazelton, K. Kirian, E. Wilson, R. Nekkanti, The implantable cardioverter defibrillator: its history, current psychological impact and future. Expert Rev. Med. Dev. 6, 43–50 (2009). https://doi.org/10.1586/17434440.6.1.43

    Article  Google Scholar 

  51. H. Beck, W.E. Boden, S. Patibandla, D. Kireyev, V. Gupta, F. Campagna, M.E. Cain, J.E. Marine, 50th Anniversary of the first successful permanent pacemaker implantation in the united states: historical review and future directions. Am. J. Cardiol. 106, 810–818 (2010). https://doi.org/10.1016/j.amjcard.2010.04.043

    Article  Google Scholar 

  52. S.K. Mulpuru, M. Madhavan, C.J. McLeod, Y.M. Cha, P.A. Friedman, Cardiac pacemakers: function, troubleshooting, and management: Part 1 of A 2-part series. J. Am. College Cardiol. 69, 189–210 (2017). https://doi.org/10.1016/j.jacc.2016.10.061

    Article  Google Scholar 

  53. S. Kadakia, R. Moore, V. Ambur, Y. Toyoda, Current status of the implantable LVAD. Gen. Thoracic Cardiovasc. Surg. 64, 501–508 (2016). https://doi.org/10.1007/s11748-016-0671-y

    Article  Google Scholar 

  54. W.T. Kuo, S.E. Deso, S.W. Robertson, Vena Tech LGM filter retrieval 16 years after implantation: piecemeal removal by intentional mechanical fracture. J. Vasc. Intervent. Radiol. 24, 1731–1737 (2013). https://doi.org/10.1016/j.jvir.2013.07.028

    Article  Google Scholar 

  55. B. James, S. Murray, S. Saint, Fracture Characterization in Nitinol. SMST-2003 Proceedings of the International Conference on Shape Memory and Superelastic Technologies, 2004, pp. 321–324

  56. B.A. James, C. McVeigh, S.N. Rosenbloom, E.P. Guyer, S.I. Lieberman, Ultrasonic Cleaning-Induced Failures in Medical Devices. J. Fail. Anal. Prevent. 10, 223–227 (2010). https://doi.org/10.1007/s11668-010-9339-6

    Article  Google Scholar 

  57. R.V. Marrey, R. Burgermeister, R.B. Grishaber, R.O. Ritchie, Fatigue and life prediction for cobalt-chromium stents: a fracture mechanics analysis. Biomaterials. 27, 1988–2000 (2006). https://doi.org/10.1016/j.biomaterials.2005.10.012

    Article  CAS  Google Scholar 

  58. B.G. Pound, Corrosion behavior of metallic materials in biomedical applications, Part I: Ti and its alloys. Corros. Rev. 32, 1–20 (2014). https://doi.org/10.1515/corrrev-2014-0007

    Article  CAS  Google Scholar 

  59. C. Trepanier, M. Tabrizian, L. Yahia, L. Bilodeau, D.L. Piron, Effect of modification of oxide layer on NiTi stent corrosion resistance. J. Biomed. Mater. Res. 43, 433–440 (1998)

    Article  CAS  Google Scholar 

  60. C.C. Lasley, M.R. Mitchell, B.A. Dooley, W.C. Bruchman, C.P. Warner, The corrosion of nitinol by exposure to decontamination solutions. SMST-2003 Proceedings of the International Conference on Shape Memory and Superelastic Technologies, 2004, pp. 375–384

  61. H.M. Haqqani, H.G. Mond, The implantable cardioverter-defibrillator lead: principles, progress, and promises. Pacing Clin. Electrophysiol. 32, 1336–1353 (2009). https://doi.org/10.1111/j.1540-8159.2009.02492.x

    Article  Google Scholar 

  62. P.P. Borek, B.L. Wilkoff, Pacemaker and ICD leads: strategies for long-term management. J. Intervent. Cardiac Electrophysiol. 23, 59–72 (2008). https://doi.org/10.1007/s10840-008-9249-7

    Article  Google Scholar 

  63. A. Nakata, T. Harada, K. Kontani, S. Hirota, Extrathoracic subclavian venipuncture by using only the j-type guidewire for permanent pacemaker electrode placement. Int. Heart J. 54, 129–132 (2013). https://doi.org/10.1536/ihj.54.129

    Article  Google Scholar 

  64. F. Femenia, J.C.L. Diez, A. Arce, A. Baranchuk, Subclavian crush syndrome: a cause of pacemaker lead fracture. Cardiovasc. J Africa. 22, 201–202 (2011). https://doi.org/10.5830/CVJA-2010-052

    Article  CAS  Google Scholar 

  65. H.K. Uhthoff, P. Poitras, D.S. Backman, Internal plate fixation of fractures: short history and recent developments. J. Ortho. Sci. 11, 118–126 (2006). https://doi.org/10.1007/s00776-005-0984-7

    Article  Google Scholar 

  66. S.M. Perren, Evolution of the internal fixation of long bone fractures. J. Bone Joint Surg. 84, 1093–1110 (2002). https://doi.org/10.1302/0301-620X.84B8.0841093

    Article  Google Scholar 

  67. E.P. Guyer, B.A. James, Surgical tool failure analyses. J. Fail. Anal. Prevent. 14, 3–9 (2014). https://doi.org/10.1007/s11668-013-9763-5

    Article  Google Scholar 

  68. D. de Melo Costa, L.K. de Oliveira Lopes, A.F.V. Tipple, K. Johani, H. Hu, A.K. Deva, E. Watanabe, K. Vickery, Evaluation of stainless steel surgical instruments subjected to multiple use/processing. Infect. Dis. Health, 23, pp. 3–9 (2018). https://doi.org/10.1016/j.idh.2017.08.004

  69. B. James, Medical device failure analysis, Materials for Medical Devices, Vol 23, ASM Handbook, ASM International, 2012. https://doi.org/10.31399/asm.hb.v23.a0005657

  70. R.H. Jones, R.E. Ricker, in Mechanisms of Stress-Corrosion Cracking, ed. by H.J. Russell, Stress-Corrosion Cracking: Materials Performance and Evaluation, 3rd ed, ASM International, 1992, pp. 1–40

  71. E.D. Mackey, T.F. Seacord, Guidelines for using stainless steel in the water and desalination industries. J. Am. Water Works Assoc. 109E, 158–169 (2017). https://doi.org/10.5942/jawwa.2017.109.0044

    Article  Google Scholar 

  72. D. Bennett, T. Goswami, Finite element analysis of hip stem designs. Mater. Des. 29, 45–60 (2008). https://doi.org/10.1016/j.matdes.2006.12.014

    Article  CAS  Google Scholar 

  73. S.J. Shaffer, W.A. Glaeser, Fretting Fatigue, Fatigue and Fracture, Vol 19. ASM Handbook, ASM International, 1996, pp. 321–330, doi:https://doi.org/10.31399/asm.hb.v19.a0002372

  74. R. Cortez, S. Mall, J.R. Calcaterra, Interaction of high-cycle and low-cycle fatigue on fretting behavior of Ti-6-4. Fretting Fatigue: Current Technology and Practices, ASTM International, 2000

  75. S. Lee, K. Nakazawa, M. Sumita, N. Maruyama, Effects of contact load and contact curvature radius of cylinder pad on fretting fatigue in high strength steel. Fretting Fatigue: Current Technology and Practices, ASTM International, 2000

  76. L. Hutson, T. Nicholas, Fretting fatigue behavior of Ti-6Al-4V against Ti-6Al-4V under flat-on-flat contact with blending radii. Fret. Fatig. Curr. Technol. Pract. (2000). https://doi.org/10.1016/S0142-1123(99)00027-4

    Article  Google Scholar 

  77. R.B. Waterhouse, Fretting Wear, Friction, Lubrication, and Wear Technology, Vol 18. ASM Handbook, ASM International, 1992, pp. 242–256

  78. D.C. Fricker, R. Shivanath, Fretting corrosion studies of universal femoral head prostheses and cone taper spigots. Biomaterials. 11, 495–500 (1990). https://doi.org/10.1016/0142-9612(90)90064-W

    Article  CAS  Google Scholar 

  79. J.L. Gilbert, C.A. Buckley, J.J. Jacobs, In vivo corrosion of modular hip prosthesis components in mixed and similar metal combinations: the effect of crevice, stress, motion and alloy coupling. J. Biomed. Mater. Res. 27, 1533–1544 (1993). https://doi.org/10.1002/jbm.820271210

    Article  CAS  Google Scholar 

  80. M.A. Buttaro, M.B. Mayor, D. Van Citters, F. Piccaluga, Fatigue fracture of a proximally modular, distally tapered fluted implant with diaphyseal fixation. J. Arthropl. 22, 780–783 (2007). https://doi.org/10.1016/j.arth.2006.07.007

    Article  Google Scholar 

  81. V. Chandrasekaran, W.L. Sauer, A.M. Taylor, D.W. Hoeppner, Evaluation of the fretting corrosion behavior of the proximal pad taper of a modular hip design. Wear. 231, 54–64 (1999). https://doi.org/10.1016/S0043-1648(99)00110-6

    Article  CAS  Google Scholar 

  82. S.C. Jani, W.L. Sauer, T.W. McLean, R.D. Lambert, P. Kovacs, Fretting corrosion mechanisms at modular implant interfaces. Modularity of Orthopedic Implants, STP 1301, American Society for Testing and Materials (1997)

  83. M. Paliwal, D.G. Allan, P. Filip, Failure of three cementless modular total hip arthroplasty prostheses: a retrieval analysis. Proceedings of the 2008 ASME International Mechanical Engineering Congress and Exposition, Vol 2, pp. 97–105 (2008) doi:https://doi.org/10.1115/IMECE2008-6699

  84. M. Viceconti, M. Baleani, S. Squarzoni, A. Toni, Fretting wear in a modular neck hip prosthesis. J. Biomed. Mater. Res. 35, 207–216 (1997). https://doi.org/10.1002/(SICI)1097-4636(199705)35:2%3c207::AID-JBM9%3e3.0.CO;2-R

    Article  CAS  Google Scholar 

  85. A. Srinivasan, E. Jung, B.R. Levine, Modularity of the femoral component in total hip arthroplasty. J. Am. Acad. Ortho. Surg. 20, 214–222 (2012). https://doi.org/10.5435/JAAOS-20-04-214

    Article  Google Scholar 

  86. D.J. Wulpi, in Understanding How Components Fail. American Society for Metals, 1985, pp. 177–181

  87. J. Hawk, R. Wilson, Fretting Wear Failures, Failure Analysis and Prevention, Vol 11. ASM Handbook, ASM International, 2002, pp. 922–940 doi:https://doi.org/10.31399/asm.hb.v11.a0003562

  88. N. Schiff, B. Grosgogeat, M. Lissac, F. Dalard, Influence of fluoride content and ph on the corrosion resistance of titanium and its alloys. Biomaterials. (2002). https://doi.org/10.1016/S0142-9612(01)00328-3

    Article  Google Scholar 

  89. G. Boere, Influence of fluoride on titanium in an acidic environment measured by polarization resistance technique. J. Appl. Biomater. 6, 283–288 (1995). https://doi.org/10.1002/jab.770060409

    Article  CAS  Google Scholar 

  90. B. James, L. Wood, S. Murray, L. Eiselstein, J. Foulds, Compressive Damage-Induced Cracking in Nitinol. SMST-2004: Proceedings of the International Conference on Shape Memory and Superelastic Technologies, p. 117 (2006)

  91. Standard Specification and Test Method for Metallic Bone Plates, F 382, Annual Book of ASTM Standards. (American Society for Testing and Materials, West Conshohocken, PA 1999), pp. 1–13

  92. S. Kurtzand, A. Edidin, Spine Technology Handbook (Elsevier, Amsterdam, 2006), p. 210

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brad James.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2021 ASM International. This article is reprinted with permission from Analysis and Prevention of Component and Equipment Failures, Vol 11A, ASM Handbook, Brett A. Miller, Roch J. Shipley, Ronald J. Parrington, Daniel P. Dennies, editors, ASM International, 2021, p 736–753, https://doi.org/10.31399/asm.hb.v11A.a0006811.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bowers, M., Ganot, G., Malito, L. et al. Failure Analysis of Medical Devices. J Fail. Anal. and Preven. 22, 154–180 (2022). https://doi.org/10.1007/s11668-021-01332-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-021-01332-2

Keywords

Navigation