Skip to main content

Advertisement

Log in

Failure Analysis of Inconel 601 Radiant Tubes in Continuous Annealing Furnace of Hot Dip Galvanizing Line

  • Case History---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

Metallurgical investigation was conducted to establish the genesis of crater-like defects and perforations in Inconel 601 radiant tubes used in Radiant Tube Heating/ Radiant Tube Soaking (RTH/RTS) section of the Continuous Annealing Furnace in Hot Dip Galvanizing Line (HDGL) of an integrated steel plant. The radiant tubes, several of them, had undergone catastrophic damage after only about 70 days of service under mixed gas firing inside the furnace. Visual examination, chemical analysis and secondary electron imaging (SEI) coupled with energy-dispersive x-ray spectrometry (EDS) were concomitantly utilized for the investigation of failed radiant tube samples. Based on the findings, the unprecedented failures were attributed to the high temperature sulphidation attack experienced by the tubes on their inner walls, owing to sulphur dioxide (SO2) resulting from combustion of hydrogen sulphide (H2S) in the mixed gas (2H2S + 3O2 → 2H2O + 2SO2). The investigation also pointed toward the apparent formation of low-melting nickel-nickel sulphide (Ni-Ni3S2) eutectic because of sulphidation, which led to unique spherical manifestations of the defects and served to highlight the deleterious influence of sulphur-bearing compounds on nickel-base alloys at high temperatures. Suitable alternative materials of construction are proposed for the radiant tubes operating under such environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Caillat, C. Pasquinet, Radiant tubes lifetime prediction in steel processing lines using fluid–structure interaction modelling. Energy Proc. 120, 596–603 (2017)

    Article  CAS  Google Scholar 

  2. K.B. Yoon, D.G. Jeong, Oxidation failure of radiant heater tubes. Eng. Fail. Anal. 6, 101–112 (1998)

    Article  Google Scholar 

  3. J. Tian, G. Zhai and Q. Tian (2018) High performance structural materials, in Y. Han (ed.) Proceedings of Chinese Materials Conference 2017. Springer, Berlin, pp. 567-574.

  4. Z. Zhu, C. Cheng, J. Zhao, L. Wang, High temperature corrosion and microstructure deterioration of KHR35H radiant tubes in continuous annealing furnace. Eng. Fail. Anal. 21, 59–66 (2012)

    Article  CAS  Google Scholar 

  5. G. Dini, S.M.M. Vaghefi, M. Lotfiani, M. Jafari, M. Safaei-Rad, M. Navabi, S. Abbasi, Computational and experimental failure analysis of continuous-annealing furnace radiant tubes exposed to excessive temperature. Eng. Fail. Anal. 15, 445–457 (2008)

    Article  CAS  Google Scholar 

  6. V. Tari, A. Najafizadeh, M.H. Aghaei, M.A. Mazloumi, Failure analysis of ethylene cracking tube. J. Fail. Anal. Prev. 9, 316–322 (2009)

    Article  Google Scholar 

  7. A. Ul-Hamid, H.M. Tawancy, A.I. Mohammed, N.M. Abbas, Failure analysis of furnace radiant tubes exposed to excessive temperature. Eng. Fail. Anal. 13, 1005–1021 (2006)

    Article  CAS  Google Scholar 

  8. A. Reihani, S.A. Razavi, E. Abbasi, A. Etemadi, Failure analysis of welded radiant tubes made of cast heat-resisting steel. J. Fail. Anal. Prev. 13, 658–665 (2013)

    Article  Google Scholar 

  9. J. Xiao, M. Zhang, Investigations on servicing damage mechanisms of Cr35Ni45Nb alloy under complex conditions. J. Mater. Res. 31(14), 2156–2163 (2016)

    Article  CAS  Google Scholar 

  10. H. Pourmohammad, A. Bahrami, A. Eslami, M. Taghipour, Failure investigation on a radiant tube in an ethylene cracking unit. Eng. Fail. Anal. 104, 216–226 (2019)

    Article  CAS  Google Scholar 

  11. M. A. Dimastiar, A. Taufik and A. Z. Syahrial, MATEC Web of Conferences, IIW 2018, 269, 03013, 1–7 (2019) https://doi.org/10.1051/matecconf/201926903013.

  12. A. Bahrami, P. Taheri, Creep failure of reformer tubes in a petrochemical plant. Metals. 9, 1–8 (2019). https://doi.org/10.3390/met9101026

    Article  CAS  Google Scholar 

  13. A. Alvino, D. Lega, F. Giacobbe, V. Mazzocchi, A. Rinaldi, Damage characterization in two reformer heater tubes after nearly 10 years of service at different operative and maintenance conditions. Eng. Fail. Anal. 17, 1526–1541 (2010)

    Article  CAS  Google Scholar 

  14. V.H. Dao, J.S. Song, J.Y. Kim, K.B. Yoon, Creep deformation characteristics of microalloyed HP40Nb steel at 950°C. J. Mech. Sci. Technol. 33(10), 1–9 (2019). https://doi.org/10.1007/s12206-019-0922-9

    Article  Google Scholar 

  15. R. Berglund, FeCrAI alloy shows good hot strength. Met. Powder Rep. 47(10), 46–49 (1992). https://doi.org/10.1016/0026-0657(92)91892-n

    Article  Google Scholar 

  16. “Kanthal introduces new radiant and protection tube grade for furnace applications. Anti-Corrosion Methods and Materials 51(4) (2004). https://doi.org/10.1108/acmm.2004.12851dad.014.

  17. T. McCrea, G. Gabbert and R. Patil, Use of ceramic single-end recuperative burners in a horizontal galvanising line. Millennium Steel, pp. 262–267 (2005).

  18. M. C. Kasprzyk, Why composite radiant tubes? Heat Treating Progress, pp. 33–35 (2004).

  19. Industrial Combustion Testing, Chapter 24: Radiant Tube Burners, 2011, Taylor & Francis Group, LLC, pp. 487–504.

  20. Materials Selection Considerations for Thermal Process Equipment, Best Practices Process Heating Technical Brief, Energy Efficiency and Renewable Energy, U.S. Department of Energy, November 2004, pp. 1–7.

  21. J. G. Wuenning, Factors influencing radiant tube life, in 106th Meeting of the Galvanizers Association 2014, Jackson, Mississippi.

  22. P. Saravanan, G. Sahoo, S. Srikanth, K. Ravi, Failure analysis of radiant tube burners in continuous annealing line (CAL) of an integrated steel plant. J. Fail. Anal. Prev. 11, 286–292 (2011). https://doi.org/10.1007/s11668-010-9426-8

    Article  Google Scholar 

  23. P. Aliprandi, E. Guglielmino, A. Sili, Damage assessment of topping furnaces radiant tubes and creep behaviour of ASTM A335 P5 steel. Mater. High Temp. 37(2), 81–88 (2020). https://doi.org/10.1080/09603409.2019.1702365

    Article  CAS  Google Scholar 

  24. D. Büschgens, N.K. Karthik, N. Schmitz, H. Pfeifer, Influence of surroundings on radiant tube lifetime in indirect-fired vertical strip annealing furnaces. Appl. Sci. 10(1748), 1–17 (2020). https://doi.org/10.3390/app10051748

    Article  CAS  Google Scholar 

  25. K.N. Strafford, The sulphidation of metals and alloys. Metall. Rev. 14(1), 153–174 (1969). https://doi.org/10.1179/mtlr.1969.14.1.153

    Article  CAS  Google Scholar 

  26. R. John, Sulphidation and mixed gas corrosion of alloys, in Shreir’s Corrosion, 2010, pp. 240–271

  27. B. Gleeson, Alloy degradation under oxidizing-sulphidizing conditions at elevated temperatures. Mater. Res. 7(1), 61–69 (2004)

    Article  CAS  Google Scholar 

  28. G.Y. Lai, High temperature corrosion problems in the process industries. J. Metals. 37(7), 14–19 (1985)

    CAS  Google Scholar 

  29. R.W. Bradshaw, and R.E. Stoltz, 1980, Alloy selection for sulfidation-oxidation resistance in coal gasification environments. Report SAND 79-8730, Sandia Laboratories, Livermore, England, pp. 3–37.

  30. Lai, G. Y., 1985, Sulfidation resistance of various high temperature alloys in low oxygen potential atmospheres. High temperature corrosion in energy systems. Metall. Soc. AIME, Warrendale, Pennsylvania, pp. 227–236.

  31. T. Beigun, A. Bruckman, Kinetics of sulphidation of Co-Cr-Al Alloys. Bulletin de L’Academie Polonaise des Sciences Serie des Sciences Chimiques. 28, 377–385 (1980)

    Google Scholar 

  32. E. Anzini, N. Glaenzer, P.M. Mignanelli, M.C. Hardy, H.J. Stone, and S. Pedrazzini, Corrosion Science, 176. Article No. 109042, pp. 1–11 (2020)

  33. S. Floreen, R.H. Kane, Effects of environment on high-temperature fatigue crack growth in a superalloy. Metall. Trans. A. 10(11), 1745–1751 (1979)

    Article  Google Scholar 

  34. J.J. Moverare, G. Leijon, H. Brodin, F. Palmert, Effect of SO2 and water vapour on the low-cycle fatigue properties of nickel-base superalloys at elevated temperature. Mater. Sci. Eng. A. 564, 107–115 (2013)

    Article  CAS  Google Scholar 

  35. H.L. Cockings, K.M. Perkins, M. Dowd, Influence of environmental factors on the corrosion fatigue response of a nickel-based superalloy. Mater. Sci. Technol. (UK). 33(9), 1048–1055 (2017)

    Article  CAS  Google Scholar 

  36. A.J. Sedriks, Corrosion of Stainless Steels, 2nd edn. (Wiley, New York, 1996), p. 404–410

    Google Scholar 

  37. R.A. Mulford, Grain boundary segregation in Ni and binary Ni alloys doped with sulfur. Met. Trans. 14A, 865–870 (1983)

    Article  Google Scholar 

  38. C. Loier, J. Boos, Influence of grain boundary sulfur concentration on the intergranular brittleness of nickel of different purities. Met. Trans. 12A, 1223–1233 (1981)

    Article  Google Scholar 

  39. M.G. Lozinskiy, G.M. Volkogon, N.Z. Pertsovskiy, Investigation of the influence of zirconium additions on the ductility and deformation structure of nickel over a wide temperature range. Russ. Metall. 5, 65–72 (1967)

    Google Scholar 

  40. C.L. White, J.H. Schneibel, R.A. Padgett, High-temperature embrittlement of Ni and Ni-Cr alloys by trace elements. Met. Trans. 14A, 595–610 (1983)

    Article  Google Scholar 

  41. J.H. Westbrook, S. Floreen, Kinetics of sulphur segregation at grain boundaries and the mechanical properties of nickel. Can. Metall. Q. 13, 181–186 (1974)

    Article  CAS  Google Scholar 

  42. R.H. Kane, S. Floreen, The effect of environment on high temperature fatigue crack growth. Met. Trans. 10A, 1745–1751 (1979)

    Google Scholar 

  43. M.Y. Nazmy, The effect of sulfur containing environment on the high temperature low cycle fatigue of a cast Ni-base alloy. Scripta Met. 16, 1329–1332 (1982)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the management of Research and Development Centre for Iron and Steel, Steel Authority of India Limited, for their support in carrying out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Srikanth.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srikanth, S., Saravanan, P., Khalkho, B. et al. Failure Analysis of Inconel 601 Radiant Tubes in Continuous Annealing Furnace of Hot Dip Galvanizing Line. J Fail. Anal. and Preven. 21, 747–758 (2021). https://doi.org/10.1007/s11668-021-01148-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-021-01148-0

Keywords

Navigation