Skip to main content
Log in

A Single-Story Analogy to Estimate Progressive Collapse Displacement of Steel Moment Frames

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

A simplified model to evaluate progressive collapse response of steel beam–column substructures under mid-span column removal scenario is presented in this paper. The influence of the span to depth ratio of the beam on progressive collapse behavior of substructures is considered in the formulation. The model is carefully validated against results obtained from rigorous numerical analyses. Finally, a single-story analogy is proposed to derive explicit expressions for progressive collapse displacement based on the energy conservation principle. The expressions covering the full range of loading—including interaction between the bending moments and beam axial load—and problem variables likely to be encountered in practice are derived. These explicit expressions can be applied in a step-by-step consideration for tracing nonlinear behavior up to failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Abruzzo, A. Matta, G. Panariello, Study of mitigation strategies for progressive collapse of a reinforced concrete commercial building. J. Perf. Constr. Facil. 20(4), 384–390 (2006)

    Article  Google Scholar 

  2. D. Asprone, F. Jalayer, A. Prota, G. Manfredi, Proposal of a probabilistic model for multi-hazard risk assessment of structures in seismic zones subjected to blast for the limit state of collapse. Struct. Saf. 32(1), 25–34 (2010). https://doi.org/10.1016/j.strusafe.2009.04.002

    Article  Google Scholar 

  3. Z.P. Bazant, Y. Zhou, Why did the world trade center collapse?—Simple analysis. J. Eng. Mech. 128(1), 2–6 (2002). https://doi.org/10.1061/(ASCE)0733-9399(2002)128:1(2)

    Article  Google Scholar 

  4. Z.P. Bažant, M. Verdure, Mechanics of progressive collapse: learning from World Trade Center and building demolitions. J. Eng. Mech. 133(3), 308–319 (2007). https://doi.org/10.1061/(ASCE)0733-9399(2007)133:3(308)

    Article  Google Scholar 

  5. Z.P. Bažant, J.L. Le, F.R. Greening, D.B. Benson, What did and did not cause collapse of World Trade Center twin towers in New York? J. Eng. Mech. 134(10), 892–906 (2008). https://doi.org/10.1061/(ASCE)0733-9399(2008)134:10(892)

    Article  Google Scholar 

  6. E. Brunesi, R. Nascimbene, F. Parisi, N. Augenti, Progressive collapse fragility of reinforced concrete framed structures through incremental dynamic analysis. Eng. Struct. 104, 65–79 (2015)

    Article  Google Scholar 

  7. W.G. Corley, P.F. Mlakar Sr., M.A. Sozen, C.H. Thornton, The Oklahoma City bombing: summary and recommendations for multihazard mitigation. J. Perf. Constr. Facil. 12(3), 100–112 (1998). https://doi.org/10.1061/(asce)0887-3828(1998)12:3(100)

    Article  Google Scholar 

  8. Department of Defense (DOD), Unified Facilities Criteria (UFC): design of buildings to resist progressive collapse (Department of Defense (DOD), Washington, DC, 2009)

    Google Scholar 

  9. D.O. Dusenberry, R.O. Hamburger, Practical means for energy-based analyses of disproportionate collapse potential. J. Perf. Constr. Facil. 20(4), 336–348 (2006). https://doi.org/10.1061/(ASCE)0887-3828(2006)20:4(336)

    Article  Google Scholar 

  10. H.M. Elsanadedy, T.H. Almusallam, Y.R. Alharbi, Y.A. Al-Salloum, H. Abbas, Progressive collapse potential of a typical steel building due to blast attacks. J. Constr. Steel Res. 101, 143–157 (2014)

    Article  Google Scholar 

  11. General Service Administration (GSA), Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects (General Service Administration (GSA), Washington, DC, 2003)

    Google Scholar 

  12. D.E. Grierson, M. Safi, L. Xu, Y. Liu, Simplified methods for progressive-collapse analysis of buildings, in Proceedings of ASCE 2005 Structures Congress: Metropolis and Beyond, pp. 20–24, (2005). https://doi.org/10.1061/40753(171)225

  13. B.A. Izzuddin, A.G. Vlassis, A.Y. Elghazouli, D.A. Nethercot, Progressive collapse of multi-storey buildings due to sudden column loss—part I: simplified assessment framework. Eng. Struct. 30(5), 1308–1318 (2008). https://doi.org/10.1016/j.engstruct.2007.07.011

    Article  Google Scholar 

  14. C.H. Lee, S. Kim, K.H. Han, K. Lee, Simplified nonlinear progressive collapse analysis of welded steel moment frames. J. Constr. Steel Res. 65(5), 1130–1137 (2009)

    Article  Google Scholar 

  15. C.H. Lee, S. Kim, K. Lee, Parallel axial-flexural hinge model for nonlinear dynamic progressive collapse analysis of welded steel moment frames. J. Struct. Eng. 136(2), 165–173 (2009). https://doi.org/10.1061/(asce)st.1943-541x.0000102

    Article  Google Scholar 

  16. E.V. Leyendecker, B. Ellingwood, Design methods for reducing the risk of progressive collapse in buildings (No. 98). US Department of Commerce, National Bureau of Standards (1977)

  17. S. Marjanishvili, E. Agnew, Comparison of various procedures for progressive collapse analysis. J. Perf. Constr. Facil. 20(4), 365–374 (2006). https://doi.org/10.1061/(ASCE)0887-3828(2006)20:4(365)

    Article  Google Scholar 

  18. W. McGuire. Prevention of progressive collapse, in Proceedings of the regional conference on tall buildings, pp. 23–24 (1974)

  19. A. Naji, F. Irani, Progressive collapse analysis of steel frames: simplified procedure and explicit expression for dynamic increase factor. Int. J. Steel Struct. 12(4), 537–549 (2012)

    Article  Google Scholar 

  20. A. Naji, Modelling the catenary effect in the progressive collapse analysis of concrete structures. Struct. Concr. 17(2), 145–151 (2016)

    Article  Google Scholar 

  21. A. Naji, Plastic limit analysis of truss structures subjected to progressive collapse. Eur. J. Eng. Res. Sci 2(9), 31–35 (2017)

    Article  Google Scholar 

  22. A. Naji, M. Rohani, Progressive collapse analysis of reinforced concrete structures: a simplified procedure. Eur. J. Eng. Res. Sci 2(10), 7–12 (2017)

    Article  Google Scholar 

  23. A. Naji, Improving the tie force method for progressive collapse design of RC frames. Int. J. Struct. Integr. 9(4), 520–531 (2018)

    Article  Google Scholar 

  24. A. Naji, Sensitivity and fragility analysis of steel moment frames subjected to progressive collapse. Asian J. Civ. Eng. 19(5), 595–606 (2018)

    Article  Google Scholar 

  25. A. Naji, Progressive collapse analysis of steel moment frames: an energy-based method and explicit expressions for capacity curves. J. Perf. Constr. Facil. 33(2), 04019008 (2019)

    Article  Google Scholar 

  26. A. Naji, M. Khodaverdi Zadeh, Progressive collapse analysis of steel braced frames. Pract. Period. Struct. Des. Constr. 24(2), 04019004 (2019)

    Article  Google Scholar 

  27. A. Naji, M.R. Ommetalab, Horizontal bracing to enhance progressive collapse resistance of steel moment frames. Struct Des Tall Spec. Build. 28(5), e1563 (2019)

    Article  Google Scholar 

  28. A. Naji, M.R. Ghiasi, Progressive collapse analysis of cable-stayed bridges. J. Fail. Anal. Prev. 19(3), 698–708 (2019)

    Article  Google Scholar 

  29. A. Naji, Comparison of column removal methods in progressive collapse analysis of reinforced concrete moment-resisting frames. Pract. Period. Struct. Des. Constr. 24(4), 04019017 (2019)

    Article  Google Scholar 

  30. E. Nigro, A. Bilotta, D. Asprone, F. Jalayer, A. Prota, G. Manfredi, Probabilistic approach for failure assessment of steel structures in fire by means of plastic limit analysis. Fire Saf. J. 68, 16–29 (2014)

    Article  Google Scholar 

  31. P. Ruth, K.A. Marchand, E.B. Williamson, Static equivalency in progressive collapse alternate path analysis: reducing conservatism while retaining structural integrity. J. Perf. Constr. Facil. 20(4), 349–364 (2006). https://doi.org/10.1061/(ASCE)0887-3828(2006)20:4(349)

    Article  Google Scholar 

  32. K.A. Seffen, Progressive collapse of the world trade center: simple analysis. J. Eng. Mech. 134(2), 125–132 (2008). https://doi.org/10.1061/(ASCE)0733-9399(2008)134:2(125)

    Article  Google Scholar 

  33. M.H. Tsai, B.H. Lin, Investigation of progressive collapse resistance and inelastic response for an earthquake-resistant RC building subjected to column failure. Eng. Struct. 30(12), 3619–3628 (2008). https://doi.org/10.1016/j.engstruct.2008.05.031

    Article  Google Scholar 

  34. A.G. Vlassis, B.A. Izzuddin, A.Y. Elghazouli, D.A. Nethercot, Progressive collapse of multi-storey buildings due to sudden column loss—part II: application. Eng. Struct. 30(5), 1424–1438 (2008). https://doi.org/10.1016/j.engstruct.2007.08.011

    Article  Google Scholar 

  35. A.G. Vlassis, B.A. Izzuddin, A.Y. Elghazouli, D.A. Nethercot, Progressive collapse of multi-storey buildings due to failed floor impact. Eng. Struct. 31(7), 1522–1534 (2009)

    Article  Google Scholar 

  36. G. Xu, B.R. Ellingwood, An energy-based partial pushdown analysis procedure for assessment of disproportionate collapse potential. J. Constr. Steel Res. 67(3), 547–555 (2011). https://doi.org/10.1007/s13296-012-4008-0

    Article  Google Scholar 

  37. W.J. Yi, Q.F. He, Y. Xiao, S.K. Kunnath, Experimental study on progressive collapse-resistant behavior of reinforced concrete frame structures. ACI Struct. J. 105(4), 433 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Naji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naji, A. A Single-Story Analogy to Estimate Progressive Collapse Displacement of Steel Moment Frames. J Fail. Anal. and Preven. 19, 1348–1357 (2019). https://doi.org/10.1007/s11668-019-00733-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-019-00733-8

Keywords

Navigation