Skip to main content
Log in

Improvement of an Exponential Cohesive Zone Model for Fatigue Analysis

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

Cohesive zone model is an important tool for fatigue analysis, especially for fatigue crack growth along with an interface. A pioneering model is the one of Roe and Siegmund (Eng Fract Mech 70:209–232, 2003), in which the damage accumulation is calculated using an irreversible exponential cohesive law. However, it is found in our recent research that the constant unloading and reloading slope in Roe’s damage evolution law could cause a discontinuity in the traction–separation curve when the mixed mode ratio changes. This limits its application to single mode cyclic loading or scenarios where the mixed mode ratio is constant. In this paper, the cause of such discontinuity is analyzed, and a robust cyclic loading formulation is proposed, which will help the exponential cohesive law remain continuous under arbitrary mixed mode cyclic loading. Moreover, it is found in this paper that by adding a scale factor to the Roe’s damage law, the fatigue failure time can be approximated with less computational cost. The relationship between fatigue failure time and the scale factor is shown to be inversely proportional.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

β :

Mixed mode ratio

C :

The scale factor in proposed modified damage law

C f :

Endurance limit parameter in Roe’s damage law

d n, d t :

Damage factor in the normal and tangential directions

D :

Fatigue damage

\(\dot{D}_{c}\) :

Fatigue damage accumulation rate

δ 0 :

Mixed mode separation threshold

δ nδ t :

The normal and tangential separations that correspond to the maximum traction

δ Σ :

Normalization parameter for separation deformation rate

Δ:

Mixed mode separation

\({\dot{\Delta }}\) :

Separation deformation rate

Δmax :

Maximum mixed mode separation in a loading cycle

Δn, Δt :

Normal and tangential separations in exponential cohesive law

Δn0, Δt0 :

Normal and tangential separations on the maximum separation envelope

Δn,max, Δt,max :

Maximum separation in each loading cycle in the normal and tangential directions

K nK t :

The initial slope of exponential cohesive law in the normal and tangential directions

N c :

Number of loading cycles to fatigue failure with a scale factor C

N 0 :

Number of loading cycles to fatigue failure without a scale factor

ϕ :

Energy release rate

ϕ nϕ t :

Mode I and mode II critical energy release rate

r :

Load ratio

σ max,0 :

Normalization parameter for resultant traction

σ minσ max :

Minimum and maximum stress in cyclic loading

σ mean :

Mean stress in cyclic loading

TS :

Normal and tangential cohesive strength

T nT t :

Normal and tangential traction in cohesive law

T n0T t0 :

Normal and tangential traction on the maximum separation envelope

\(\bar{T}\) :

Resultant traction

T c :

Fatigue failure time with a scale factor C

T 0 :

Fatigue failure time without a scale factor

References

  1. D. Dugdale, Yielding of steel sheets containing slits. J Mech Phys Solids 8, 100–104 (1960)

    Article  Google Scholar 

  2. G.I. Barenblatt, The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 7, 55–129 (1962)

    Article  Google Scholar 

  3. P.P. Camanho, C. Davila, M. De Moura, Numerical simulation of mixed-mode progressive delamination in composite materials. J Compos Mater 37, 1415–1438 (2003)

    Article  Google Scholar 

  4. X. Xu, A. Needleman, Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42, 1397–1434 (1994)

    Article  Google Scholar 

  5. V. Tvergaard, J.W. Hutchinson, The relation between crack growth resistance and fracture process parameters in elastic–plastic solids. J Mech Phys Solids 40, 1377–1397 (1992)

    Article  Google Scholar 

  6. K.Y. Volokh, Comparison between cohesive zone models. Commun Numer Methods Eng 20, 845–856 (2004)

    Article  Google Scholar 

  7. G. Alfano, On the influence of the shape of the interface law on the application of cohesive-zone models. Compos Sci Technol 66, 723–730 (2006)

    Article  Google Scholar 

  8. P. Camanho, F. Matthews, Delamination onset prediction in mechanically fastened joints in composite laminates. J Compos Mater 33, 906–927 (1999)

    Article  Google Scholar 

  9. Camanho PP, Dávila CG. Mixed-mode decohesion finite elements for the simulation of delamination in composite materials. 2002

  10. A. Hillerborg, M. Modéer, P. Petersson, Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res 6, 773–781 (1976)

    Article  Google Scholar 

  11. V. Tvergaard, J.W. Hutchinson, The influence of plasticity on mixed mode interface toughness. J Mech Phys Solids 41, 1119–1135 (1993)

    Article  Google Scholar 

  12. G. Wells, L. Sluys, A new method for modelling cohesive cracks using finite elements. Int J Numer Methods Eng 50, 2667–2682 (2001)

    Article  Google Scholar 

  13. K. Roe, T. Siegmund, An irreversible cohesive zone model for interface fatigue crack growth simulation. Eng Fract Mech 70, 209–232 (2003)

    Article  Google Scholar 

  14. J. Bouvard, J. Chaboche, F. Feyel, F. Gallerneau, A cohesive zone model for fatigue and creep–fatigue crack growth in single crystal superalloys. Int J Fatigue 31, 868–879 (2009)

    Article  Google Scholar 

  15. M. De Moura, J. Gonçalves, Cohesive zone model for high-cycle fatigue of adhesively bonded joints under mode I loading. Int J Solids Struct 51, 1123–1131 (2014)

    Article  Google Scholar 

  16. O. Nguyen, E. Repetto, M. Ortiz, R. Radovitzky, A cohesive model of fatigue crack growth. Int J Fract 110, 351–369 (2001)

    Article  Google Scholar 

  17. P. Robinson, U. Galvanetto, D. Tumino, G. Bellucci, D. Violeau, Numerical simulation of fatigue-driven delamination using interface elements. Int J Numer Methods Eng 63, 1824–1848 (2005)

    Article  Google Scholar 

  18. A. Turon, J. Costa, P. Camanho, C. Dávila, Simulation of delamination in composites under high-cycle fatigue. Compos Part A Appl Sci Manuf 38, 2270–2282 (2007)

    Article  Google Scholar 

  19. S. Maiti, P.H. Geubelle, A cohesive model for fatigue failure of polymers. Eng Fract Mech 72, 691–708 (2005)

    Article  Google Scholar 

  20. H. Jiang, X. Gao, T.S. Srivatsan, Predicting the influence of overload and loading mode on fatigue crack growth: a numerical approach using irreversible cohesive elements. Finite Elements Anal Des 45, 675–685 (2009)

    Article  Google Scholar 

  21. M. Van den Bosch, P. Schreurs, M. Geers, An improved description of the exponential Xu and Needleman cohesive zone law for mixed-mode decohesion. Eng Fract Mech 73, 1220–1234 (2006)

    Article  Google Scholar 

  22. M. Kolluri, J. Hoefnagels, J. van Dommelen, M. Geers, Irreversible mixed mode interface delamination using a combined damage-plasticity cohesive zone enabling unloading. Int J Fract 185, 77–95 (2014)

    Article  Google Scholar 

  23. R. Kregting, Cohesive Zone Models—Towards a Robust Implementation of Irreversible Behavior, MT05.11 (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ala Tabiei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Tabiei, A. Improvement of an Exponential Cohesive Zone Model for Fatigue Analysis. J Fail. Anal. and Preven. 18, 607–618 (2018). https://doi.org/10.1007/s11668-018-0434-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-018-0434-4

Keywords

Navigation