Skip to main content

Advertisement

Log in

Effect of In Situ Generated TiNx on Structure and Tribological Behavior of Al2O3-13wt.% TiO2 Composite Coatings Produced via Reactive Plasma Spraying

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Microstructure, mechanical properties, and tribological behavior of Al2O3-13wt.% TiO2 (AT13)-based coatings with different TiNx (x = 0.3 or 1) contents were investigated. Herein, TiNx complexes were generated from Ti powder via reactive plasma spraying. The morphology and microstructure of AT13-TiNx multiphase ceramic coatings were analyzed by scanning electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction. The presence of TiNx complexes improved microhardness of coatings. At the same time, excessive TiNx content led to uneven microhardness distribution in coatings. Moreover, with the increase in TiNx concentration, wear mechanisms of coatings changed from adhesive and abrasive wear (coating A) or abrasive wear with lubricating phase (coating D) to severe brittle fracture and abrasive wear (coating E). Besides, the coefficient of friction (COF) of coating D reached its lowest value. This was because TiO2 and TiN0.3 with the smallest hardness were predominant in the coating, playing the role of lubricating phases in friction process. As a result, the pinning effect of hard TiN particles prevented plastic deformation of the coating, thus reducing COF and wear quality loss of coating D. In turn, excessive TiNx particles led to the formation of uneven coating (coating F), in which stress concentration during friction testing increased and abrasive wear was aggravated, causing an increase in COF. At low friction speed (100 rpm), wear mechanism of AT13-TiNx composite coating remained unchanged, and COF reached its maximum. At high friction speed (300 rpm), wear mechanism was transformed into adhesive wear and oxidation wear, and COF achieved its lowest value. At last, under the condition of low load (5 N), the wear mass loss of AT13-TiNx composite coating was the minimum, but COF increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. İ. Çelik, Structure and Surface Properties of Al2O3-TiO2 Ceramic Coated AZ31 Magnesium Alloy, Ceram. Int., 2016, 42, p 13659-13663. https://doi.org/10.1016/j.ceramint.2016.05.162

    Article  CAS  Google Scholar 

  2. Z. Yang, H. Hao, Q. Gao, Y. Cao, R. Han, and H. Qi, Strengthening Mechanism and High-Temperature Properties of H13+WC/Y2O3 Laser-Cladding Coatings, Surf. Coat. Technol., 2021, 405, p 126544. https://doi.org/10.1016/j.surfcoat.2020.126544

    Article  CAS  Google Scholar 

  3. X. Yang, J. Jia, W. Chen, G. Yang, H. Xin, N. He, and S. Ma, Corrosive Wear Behavior of HVOF-Sprayed Micro-nano-structured Cr3C2-NiCr Cermet Coatings Under Aqueous Media, Ceram. Int., 2022, 48, p 15144-15151. https://doi.org/10.1016/j.ceramint.2022.02.044

    Article  CAS  Google Scholar 

  4. A. Amanov and R. Karimbaev, Effect of Surface Engineering on Wear and Fatigue Behavior of Thermally Sprayed SiC Coating, Surf. Coat. Technol., 2022, 445, p 128751. https://doi.org/10.1016/j.surfcoat.2022.128751

    Article  CAS  Google Scholar 

  5. J. Zhou, Y. Cheng, J. Yang, Q. Wang, and X. Liang, Effects of WS2 and Ti3AlC2 Additions on the High Temperature Wear Properties of Laser Cladding YW1/NiCoCrAlY Tool Coating, Ceram. Int., 2021, 47, p 35124-35133. https://doi.org/10.1016/j.ceramint.2021.09.055

    Article  CAS  Google Scholar 

  6. W. Su, S. Niu, Y. Huang, C. Wang, Y. Wen, X. Li, C. Deng, C. Deng, and M. Liu, Friction and Wear Properties of Plasma-Sprayed Cr2O3-BaCrO4 Coating at Elevated Temperatures, Ceram. Int., 2022, 48, p 8696-8705. https://doi.org/10.1016/j.ceramint.2021.12.081

    Article  CAS  Google Scholar 

  7. X. Zheng, K. Zheng, J. Chang, S. Qu, W. Jia, Z. Li, S. Yu, J. Gao, and Y. Ma, Microstructure, Mechanical Properties and Reciprocating Wear Properties of Diamond Grits-Reinforced NiCrBSi Composite Coatings on 42CrMo, Surf. Coat. Technol., 2022, 445, p 128703. https://doi.org/10.1016/j.surfcoat.2022.128703

    Article  CAS  Google Scholar 

  8. J. Lv, Y. Wu, S. Hong, J. Cheng, S. Zhu, and Y. Chen, Erosion Behavior and Mechanism of the HVOF-Sprayed (AlCoCrFeNi)/(WC-10Co)1-Composite Coatings at Different Slurry Sand Concentrations, Int. J. Refract. Metals Hard Mater., 2023, 110, p 106011. https://doi.org/10.1016/j.ijrmhm.2022.106011

    Article  CAS  Google Scholar 

  9. H. Aghajani, Z. Valefi, and P. Zamani, Phase Composition, Microstructure, Mechanical Properties, and Wear Performance of Nanostructured Al2O3 and Al2O3-Y2O3 Coatings Deposited by Plasma Spraying, Appl. Surf. Sci., 2022, 585, p 152754. https://doi.org/10.1016/j.apsusc.2022.152754

    Article  CAS  Google Scholar 

  10. J.W. Du, L. Chen, J. Chen, and J.L. Yue, Effects of Additional Oxygen on the Structural, Mechanical, Thermal, and Corrosive Properties of TiN Coatings, Ceram. Int., 2022, 48, p 14432-14441. https://doi.org/10.1016/j.ceramint.2022.01.336

    Article  CAS  Google Scholar 

  11. G. Li, J. Ma, H. Wang, J. Kang, and B. Xu, Effects of Argon Gas Flow Rate on the Microstructure and Micromechanical Properties of Supersonic Plasma Sprayed Nanostructured Al2O3-13wt.%TiO2 Coatings, Appl. Surf. Sci., 2014, 311, p 124-130. https://doi.org/10.1016/j.apsusc.2014.05.025

    Article  CAS  Google Scholar 

  12. R. Li, S. Wang, J. Pu, D. Zhou, M. Yu, Y. Wei, and W. Guo, Study of NaCl-Induced Hot-Corrosion Behavior of TiN Single-Layer and TiN/Ti Multilayer Coatings at 500 °C, Corros. Sci., 2021, 192, p 109838. https://doi.org/10.1016/j.corsci.2021.109838

    Article  CAS  Google Scholar 

  13. H. Luo, P. Song, A. Khan, J. Feng, J.J. Zang, X.P. Xiong, J.G. Lü, and J.S. Lu, Alternant Phase Distribution and Wear Mechanical Properties of an Al2O3-40wt.%TiO2 Composite Coating, Ceram. Int., 2017, 43, p 7295-7304. https://doi.org/10.1016/j.ceramint.2017.03.029

    Article  CAS  Google Scholar 

  14. X. Wang, Y. Wang, X. Song, W. Li, W. Zheng, and Y. Zeng, Analysis of Thermal Shock Performance of Y2O3 Stabilized ZrO2 (YSZ) Coating Based on Residual Stress and Micro-morphology, Ceram. Int., 2022 https://doi.org/10.1016/j.ceramint.2022.03.198

    Article  Google Scholar 

  15. D. Wang, Z. Tian, S. Wang, L. Shen, and Y. Huang, Solid Particle Erosion Behaviour of Plasma-Sprayed Conventional and Nanostructured Al2O3-13 wt% TiO2 Ceramic Coatings, Trans. Indian Ceram. Soc., 2015, 74, p 90-96. https://doi.org/10.1080/0371750X.2015.1036169

    Article  CAS  Google Scholar 

  16. D. Wang, Z. Tian, L. Shen, Z. Liu, and Y. Huang, Influences of Laser Remelting on Microstructure of Nanostructured Al2O3-13wt.% TiO2 Coatings Fabricated by Plasma Spraying, Appl. Surf. Sci., 2009, 255, p 4606-4610. https://doi.org/10.1016/j.apsusc.2008.11.082

    Article  CAS  Google Scholar 

  17. D.S. Wang, G. Qu, and J.L. Su, Thermal Barrier Effects Comparison of Plasma-Sprayed and Laser-Remelted Al2O3-13% TiO2 Ceramic Coatings, Adv. Mater. Res., 2014, 978, p 40-43. https://doi.org/10.4028/www.scientific.net/AMR.978.40

    Article  CAS  Google Scholar 

  18. Z. Zou, Y. Wang, F. Zhou, L. Wang, S. Liu, and Y. Wang, Tribological Property of Plasma-Sprayed Al2O3-13wt.%TiO2 Coatings Onto Resin-Based Composites, Appl. Surf. Sci., 2018, 431, p 75-80. https://doi.org/10.1016/j.apsusc.2017.05.239

    Article  CAS  Google Scholar 

  19. L. Xu and D. Wang, Grain Growth Characteristics of Plasma-Sprayed Nanostructured Al2O3-13wt.%TiO2 Coatings During Laser Remelting, Ceram. Int., 2021, 47, p 15052-15058. https://doi.org/10.1016/j.ceramint.2021.02.062

    Article  CAS  Google Scholar 

  20. M. Grimm, S. Conze, L. Berger, G. Paczkowski, T. Lindner, and T. Lampke, Microstructure and Sliding Wear Resistance of Plasma Sprayed Al2O3-Cr2O3-TiO2 Ternary Coatings from Blends of Single Oxides, Coatings, 2020, 10, p 42. https://doi.org/10.3390/coatings10010042

    Article  CAS  Google Scholar 

  21. S. Mehar, S.G. Sapate, N. Vashishtha, and P. Bagde, Effect of Y2O3 Addition on Tribological Properties of Plasma Sprayed Al2O3-13% TiO2 Coating, Ceram. Int., 2020, 46, p 11799-11810. https://doi.org/10.1016/j.ceramint.2020.01.214

    Article  CAS  Google Scholar 

  22. C. Zhang, B. Huang, J. Xu, W. Cao, G. Sun, J. Xiao, and S. Yin, Effect of Mo on Tribological Behaviors of Atmospheric Plasma Sprayed Al2O3-13%TiO2/Mo Coatings Under Boundary Lubrication Condition, Ceram. Int., 2020, 46, p 15066-15075. https://doi.org/10.1016/j.ceramint.2020.03.041

    Article  CAS  Google Scholar 

  23. Z. Wang, J. Zhang, H. Zhang, M. Li, T. Li, and Z. Wang, Fabrication and Corrosion Resistance of Plasma-Sprayed Glass-Powder-Doped Al2O3-13wt.%TiO2 Coatings, J. Therm. Spray Technol., 2020, 29, p 500-509. https://doi.org/10.1007/s11666-019-00978-7

    Article  CAS  Google Scholar 

  24. R. Palanivelu and A. Ruban Kumar, Scratch and Wear Behaviour of Plasma Sprayed Nano Ceramics Bilayer Al2O3-13wt.%TiO2/Hydroxyapatite Coated on Medical Grade Titanium Substrates in SBF Environment, Appl. Surf. Sci., 2014, 315, p 372-379. https://doi.org/10.1016/j.apsusc.2014.07.167

    Article  CAS  Google Scholar 

  25. F. Sun, X. Liu, S. Luo, D. Xiang, D. Ba, Z. Lin, and G. Song, Duplex Treatment of Arc Plasma Nitriding and PVD TiN Coating Applied to Dental Implant Screws, Surf. Coat. Technol., 2022, 439, p 128449. https://doi.org/10.1016/j.surfcoat.2022.128449

    Article  CAS  Google Scholar 

  26. G. Xian, J. Xiong, H. Fan, F. Jiang, Z. Guo, H. Zhao, L. Xian, Z. Jing, J. Liao, and Y. Liu, Investigations on Microstructure, Mechanical and Tribological Properties of TiN Coatings Deposited on Three Different Tool Materials, Int. J. Refract. Metals Hard Mater., 2022, 102, p 105700. https://doi.org/10.1016/j.ijrmhm.2021.105700

    Article  CAS  Google Scholar 

  27. Y. Zhang, Z. Wang, Y. Shi, Y. Shao, and C. Gu, Combined Effect of Heat Treatment and Sealing on the Corrosion Resistance of Reactive Plasma Sprayed TiNx/TiOy Coatings, Ceram. Int., 2019, 45, p 24545-24553. https://doi.org/10.1016/j.ceramint.2019.08.182

    Article  CAS  Google Scholar 

  28. Z. Liu, D. Yan, Y. Dong, Y. Yang, Z. Chu, and Z. Zhang, The Effect of Modified Epoxy Sealing on the Electrochemical Corrosion Behaviour of Reactive Plasma-Sprayed TiN Coatings, Corros. Sci., 2013, 75, p 220-227. https://doi.org/10.1016/j.corsci.2013.05.031

    Article  CAS  Google Scholar 

  29. Z. Chu, F. Wei, X. Zheng, C. Zhang, and Y. Yang, Microstructure and Properties of TiN/Fe-Based Amorphous Composite Coatings Fabricated by Reactive Plasma Spraying, J. Alloy. Compd., 2019, 785, p 206-213. https://doi.org/10.1016/j.jallcom.2019.01.171

    Article  CAS  Google Scholar 

  30. B. Shi, S. Huang, P. Zhu, C. Xu, P. Guo, and Y. Fu, In-Situ TiN Reinforced Composite Coatings Prepared by Plasma Spray Welding on Ti6Al4V, Mater. Lett., 2020, 276, p 128093. https://doi.org/10.1016/j.matlet.2020.128093

    Article  CAS  Google Scholar 

  31. D. Chen, E.H. Jordan, and M. Gell, Microstructure of Suspension Plasma Spray and Air Plasma Spray Al2O3-ZrO2 Composite Coatings, J. Therm. Spray Technol., 2009, 18, p 421-426. https://doi.org/10.1007/s11666-009-9306-5

    Article  CAS  Google Scholar 

  32. H. Tahara and Y. Ando, Study of Titanium Nitride Deposition by Supersonic Plasma Spraying, Vacuum, 2008, 83, p 98-101. https://doi.org/10.1016/j.vacuum.2008.03.088

    Article  CAS  Google Scholar 

  33. Z. Mao, J. Ma, J. Wang, and B. Sun, The Effect of Powder Preparation Method on the Corrosion and Mechanical Properties of TiN-Based Coatings by Reactive Plasma Spraying, Appl. Surf. Sci., 2009, 255, p 3784-3788. https://doi.org/10.1016/j.apsusc.2008.10.047

    Article  CAS  Google Scholar 

  34. A. Nevarez-Rascon, A. Aguilar-Elguezabal, E. Orrantia, and M.H. Bocanegra-Bernal, Compressive Strength, Hardness and Fracture Toughness of Al2O3 Whiskers Reinforced ZTA and ATZ Nanocomposites: Weibull Analysis, Int. J. Refract. Metal Hard Mater., 2011, 29, p 333-340. https://doi.org/10.1016/j.ijrmhm.2010.12.008

    Article  CAS  Google Scholar 

  35. S. Hong, Y. Wu, B. Wang, J. Zhang, Y. Zheng, and L. Qiao, The Effect of Temperature on the Dry Sliding Wear Behavior of HVOF Sprayed Nanostructured WC-CoCr Coatings, Ceram. Int., 2017, 43, p 458-462. https://doi.org/10.1016/j.ceramint.2016.09.180

    Article  CAS  Google Scholar 

  36. C.L. Wu, T.Z. Xu, Z.Y. Wang, C.H. Zhang, S. Zhang, C.L. Ni and D.X. Zhang, Laser Surface Alloying of FeCoCrAlNiTi High Entropy Alloy Composite Coatings Reinforced with TiC on 304 Stainless Steel to Enhance Wear Behavior, Ceram. Int., 2022 https://doi.org/10.1016/j.ceramint.2022.04.049

    Article  Google Scholar 

  37. X. Zhao, D. Yan, S. Li, and C. Lu, The Effect of Heat Treatment on the Electrochemical Corrosion Behavior of Reactive Plasma-Sprayed TiN Coatings, Appl. Surf. Sci., 2011, 257, p 10078-10083. https://doi.org/10.1016/j.apsusc.2011.06.143

    Article  CAS  Google Scholar 

  38. W. Chen, Z. Wang, X. Liu, J. Jia, and Y. Hua, Effect of Load on the Friction and Wear Characteristics of Si3N4-hBN Ceramic Composites Sliding Against PEEK in Artificial Seawater, Tribol. Int., 2020, 141, p 105902. https://doi.org/10.1016/j.triboint.2019.105902

    Article  CAS  Google Scholar 

  39. C. Liu and J. Sun, Effect of Load on Friction and Wear Behaviors of Alumina Matrix Ceramic Guideway Materials, J. Alloy. Compd., 2018, 743, p 268-273. https://doi.org/10.1016/j.jallcom.2018.01.395

    Article  CAS  Google Scholar 

  40. H. He, L. Luo, and K. Senetakis, Effect of Normal Load and Shearing Velocity on the Interface Friction of Organic Shale— Proppant Simulant, Tribol. Int., 2020, 144, p 106119. https://doi.org/10.1016/j.triboint.2019.106119

    Article  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51909071) and the Graduate Research and Innovation Projects of Jiangsu Province (Grant No. KYCX21_0463).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zehua Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Yang, G., Zhou, Z. et al. Effect of In Situ Generated TiNx on Structure and Tribological Behavior of Al2O3-13wt.% TiO2 Composite Coatings Produced via Reactive Plasma Spraying. J Therm Spray Tech 32, 2364–2377 (2023). https://doi.org/10.1007/s11666-023-01657-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-023-01657-4

Keywords

Navigation